A Dual-Band Low-Profile Microstrip Antenna with Fan-Shaped and Rectangular Beams
Abstract
:1. Introduction
2. Geometric Shape and Design Principle of the Proposed Antenna
2.1. Theory of Characteristic Modes
2.2. Principle of Feature Pattern Combination
2.3. The Structure Configuration and Evolution Process of the Antenna
3. Design of Dual-Frequency Microstrip Antenna
3.1. Realization of Wide Fan Beam
3.2. Realization of Flat Top Radiant Beam
4. Parameter Analysis
5. Physical Test Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hay, S.G.; Archer, J.W.; Timms, G.P.; Smith, S.L. A beam-scanning dual-polarized fan-beam antenna suitable for Millimeter wavelengths. IEEE Trans. Antennas Propag. 2005, 53, 2516–2524. [Google Scholar] [CrossRef]
- Cui, Y.; Li, R.; Fu, H. A Broadband Dual-Polarized Planar Antenna for 2G/3G/LTE Base Stations. IEEE Trans. Antennas Propag. 2014, 62, 4836–4840. [Google Scholar] [CrossRef]
- Eom, S.Y.; Son, S.H.; Jung, Y.B.; Jeon, S.I.; Ganin, S.A.; Shubov, A.G.; Tobolev, A.K.; Shishlov, A.V. Design and Test of a Mobile Antenna System with Tri-Band Operation for Broadband Satellite Communications and DBS Reception. IEEE Trans. Antennas Propag. 2007, 55, 3123–3133. [Google Scholar] [CrossRef]
- Ferrero, F.; Luxey, C.; Jacquemod, G.; Staraj, R. Dual-band circularly polarized microstrip antenna for satellite applications. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 13–15. [Google Scholar] [CrossRef]
- Menzel, W.; Moebius, A. Antenna Concepts for Millimeter-Wave Automotive Radar Sensors. Proc. IEEE 2012, 100, 2372–2379. [Google Scholar] [CrossRef]
- Yi, Z.; Zhange, R.; Xu, B.; Chen, Y.; Zhu, L.; Li, F.; Yang, G.; Luo, Y. A Wide-Angle Beam Scanning Antenna in E-plane for K-band Radar Sensor. IEEE Access 2019, 7, 171684–171690. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, L.; Liu, Z.; Liu, Y. Dual-Band Single-Layer Microstrip Patch Antenna with Enhanced Bandwidth and Beamwidth Based on Reshaped Multiresonant Modes. IEEE Trans. Antennas Propag. 2019, 67, 7127–7132. [Google Scholar] [CrossRef]
- Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Boston, MA, USA, 2001. [Google Scholar]
- Yang, G.; Li, J.; Wei, D.; Zhou, S.; Yang, J. Broadening the beam-width of microstrip antenna by the induced vertical currents. IET Microw. Antennas Propag. 2018, 12, 190–194. [Google Scholar] [CrossRef]
- Yu, C.; Li, E.S.; Jin, H.; Cao, Y.; Su, G.; Che, W.; Chin, K. 24 GHz Horizontally Polarized Automotive Antenna Arrays with Wide Fan Beam and High Gain. IEEE Trans. Antennas Propag. 2019, 67, 892–904. [Google Scholar] [CrossRef]
- Cho, H.; Lim, S.; Jo, H.; Chae, S.; Yu, J. Microstrip-line type bruce array antenna with wide fan beam and high gain. J. Electromagn. Waves Appl. 2021, 35, 813–821. [Google Scholar] [CrossRef]
- Chou, H.; Kuo, L.; Chou, S. Design of Shaped Reflector Antennas for the Applications of Outdoor Base Station Antennas in LTE Mobile Communications. Radio Sci. 2018, 53, 1023–1038. [Google Scholar] [CrossRef]
- Wen, S.; Xu, Y.; Dong, Y. Low-Profile Wideband Omnidirectional Antenna for 4G/5G Indoor Base Station Application Based on Multiple Resonances. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 488–492. [Google Scholar] [CrossRef]
- Li, M.; Pu, L.; Tang, M.; Zhu, L. A Single-Layer Dual-Band Array at Low-Frequency Ratio with Concurrent Broad Fan Beam and Narrow Pencil Beam. IEEE Trans. Antennas Propag. 2022, 70, 3354–3365. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J. Quasi-Yagi Slotted Array Antenna with Fan-Beam Characteristics for 28 GHz 5G Mobile Terminals. Appl. Sci. 2020, 10, 7686. [Google Scholar] [CrossRef]
- Yang, G.; Li, J.; Zhou, S.G.; Qi, Y. A Wide-Angle E-Plane Scanning Linear Array Antenna with Wide Beam Elements. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2923–2926. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, T.; Wang, C.; Shi, X. Wideband Circularly Polarized Microstrip Antenna with Wide Beamwidth. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1577–1580. [Google Scholar] [CrossRef]
- Yang, W.J.; Pan, Y.M.; Zheng, S.Y. A Low-Profile Wideband Circularly Polarized Crossed-Dipole Antenna with Wide Axial-Ratio and Gain Beamwidths. IEEE Trans. Antennas Propag. 2018, 66, 3346–3353. [Google Scholar] [CrossRef]
- Liu, N.; Gao, S.; Fu, G.; Zhu, L. A Low-Profile Dual-Band Patch Antenna with Simultaneous Wide Beamwidth and High Gain by Using Multiresonant Modes. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 813–817. [Google Scholar] [CrossRef]
- Ko, S.; Lee, J. Hybrid Zeroth-Order Resonance Patch Antenna with Broad E-Plane Beamwidth. IEEE Trans. Antennas Propag. 2013, 61, 19–25. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K. A Linearly Polarized Magnetoelectric Dipole With Wide H-Plane Beamwidth. IEEE Trans. Antennas Propag. 2014, 62, 1830–1836. [Google Scholar] [CrossRef]
- Wong, H.; Mak, K.-M.; Luk, K.-M. Wideband shorted bowtie patch antenna with electric dipole. IEEE Trans. Antennas Propag. 2008, 56, 2098–2101. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. A Dual-Band Metasurface Antenna Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2018, 66, 5620–5624. [Google Scholar] [CrossRef]
- Zhao, S.; Li, X.; Chen, Y.; Zhao, W.; Qi, Z. A Wide-Beam Metasurface Antenna Using Pattern Combination of Characteristic Modes. Appl. Comput. Electromagn. Soc. J. 2022, 37, 41–49. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-Profile Wideband Metasurface Antennas Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|
Wg | 70 | Wp | 23.4 | L5 | 7.4 |
W1 | 6 | Lg | 90 | L6 | 16 |
W2 | 3.3 | L1 | 24 | L7 | 2 |
W3 | 25 | L2 | 1 | Wg | 70 |
W4 | 22 | L3 | 1.2 | Lp | 60 |
W5 | 5 | L4 | 0.5 | R | 0.5 |
Ref. | Profile | Overall Dimensions | Frequency (GHz) | HPBW | Gain (dBi) |
---|---|---|---|---|---|
[13] | 0.026λ0 | 0.22λ0 × 1.6λ0 | 5.7 | 150° | 10.5 |
[15] | 0.134λ0 | 0.31λ0 × 0.43λ0 | 4 | 221° | 3.48 |
[17] | 0.1λ0 | 0.46λ0 × 0.46λ0 | 1 | 154° | 4.7 |
[18] | 0.02λ0 | 0.363λ0 × 1.089λ0 | 1.4 | 130° | 9.6 |
[19] | 0.048λ0 | 0.55λ0 × 0.84λ0 | 3.4/5.8 | 154° | 6 |
[20] | 0.06λ0 | 0.766λ0 × 0.861λ0 | 5.7 | 115° | 7.5 |
[21] | 0.45λ0 | λ0 × λ0 | 3 | 120° | 6.3 |
This | 0.03λ0 | 0.7λ0 × λ0 | 5.13/5.48 | 141°/100° | 8.2/5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-P.; Li, M.-M.; Ji, J.-F.; Sun, Q.-Q.; Li, W.; Zhang, A.-X. A Dual-Band Low-Profile Microstrip Antenna with Fan-Shaped and Rectangular Beams. Electronics 2023, 12, 4040. https://doi.org/10.3390/electronics12194040
Li X-P, Li M-M, Ji J-F, Sun Q-Q, Li W, Zhang A-X. A Dual-Band Low-Profile Microstrip Antenna with Fan-Shaped and Rectangular Beams. Electronics. 2023; 12(19):4040. https://doi.org/10.3390/electronics12194040
Chicago/Turabian StyleLi, Xue-Ping, Meng-Meng Li, Jun-Fei Ji, Qian-Qian Sun, Wei Li, and An-Xue Zhang. 2023. "A Dual-Band Low-Profile Microstrip Antenna with Fan-Shaped and Rectangular Beams" Electronics 12, no. 19: 4040. https://doi.org/10.3390/electronics12194040
APA StyleLi, X. -P., Li, M. -M., Ji, J. -F., Sun, Q. -Q., Li, W., & Zhang, A. -X. (2023). A Dual-Band Low-Profile Microstrip Antenna with Fan-Shaped and Rectangular Beams. Electronics, 12(19), 4040. https://doi.org/10.3390/electronics12194040