TEM Strata Inversion Imaging with IP Effect Based on Enhanced GCN by Extracting Long-Dependency Features
Abstract
:1. Introduction
2. TEM Inversion with IP Effect
2.1. TEM Forward and Inversion
2.2. IP Effect on Inversion
3. Our Networks Framework
3.1. Temporal Feature Capturing
3.2. Spatial Feature Capturing
3.3. Network Inverse Frame
3.4. Training
4. Numerical Models
4.1. Model 1
4.2. Model 2
5. Discussion
5.1. Denoising
5.2. Complex Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, S.; Huang, Q.; Zhao, L. A Deep Learning-Based Network for the Simulation of Airborne Electromagnetic Responses. Geophys. J. Int. 2022, 233, 253–263. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Zhao, X.; Wang, Y.; Gao, Q.; Ji, Y. Characterization of Excitation Effects and Data Interpretation of Combined Time-Domain Multiwaveform Transmission Currents. IEEE Sens. J. 2023, 23, 17159–17172. [Google Scholar] [CrossRef]
- Li, J.; Farquharson, C.G.; Hu, X. Three Effective Inverse Laplace Transform Algorithms for Computing Time-Domain Electromagnetic responsesInverse Laplace Transform Algorithms. Geophysics 2016, 81, E113–E128. [Google Scholar] [CrossRef]
- Cai, H.; Liu, M.; Zhou, J.; Li, J.; Hu, X. Effective 3D-Transient Electromagnetic Inversion Using Finite-Element Method with a Parallel Direct Solver. Geophysics 2022, 87, E377–E392. [Google Scholar] [CrossRef]
- Cai, H.; Hu, X.; Xiong, B.; Zhdanov, M.S. Finite-Element Time-Domain Modeling of Electromagnetic Data in General Dispersive Medium Using Adaptive Padé Series. Comput. Geosci. 2017, 109, 194–205. [Google Scholar] [CrossRef]
- Maurya, P.K.; Christensen, F.E.; Kass, M.A.; Pedersen, J.B.; Frederiksen, R.R.; Foged, N.; Christiansen, A.V.; Auken, E. Technical Note: Efficient Imaging of Hydrological Units below Lakes and Fjords with a Floating, Transient Electromagnetic (FloaTEM) System. Hydrol. Earth Syst. Sci. 2022, 26, 2813–2827. [Google Scholar] [CrossRef]
- Sandersen, P.B.E.; Kallesøe, A.J.; Møller, I.; Høyer, A.-S.; Jørgensen, F.; Pedersen, J.B.; Christiansen, A.V. Utilizing the Towed Transient ElectroMagnetic Method (tTEM) for Achieving Unprecedented near-Surface Detail in Geological Mapping. Eng. Geol. 2021, 288, 106125. [Google Scholar] [CrossRef]
- Li, R.; Hu, X.; Xu, D.; Liu, Y.; Yu, N. Characterizing the 3D Hydrogeological Structure of a Debris Landslide Using the Transient Electromagnetic Method. J. Appl. Geophys. 2020, 175, 103991. [Google Scholar] [CrossRef]
- Pondthai, P.; Everett, M.E.; Micallef, A.; Weymer, B.A.; Faghih, Z.; Haroon, A.; Jegen, M. 3D Characterization of a Coastal Freshwater Aquifer in SE Malta (Mediterranean Sea) by Time-Domain Electromagnetics. Water 2020, 12, 1566. [Google Scholar] [CrossRef]
- Auken, E.; Foged, N.; Larsen, J.J.; Lassen, K.V.T.; Maurya, P.K.; Dath, S.M.; Eiskjær, T.T. tTEM—A Towed Transient Electromagnetic System for Detailed 3D Imaging of the Top 70 m of the Subsurface. Geophysics 2019, 84, E13–E22. [Google Scholar] [CrossRef]
- Cheng, M.; Yang, D.; Luo, Q. Interpreting Surface Large-Loop Time-Domain Electromagnetic Data for Deep Mineral Exploration Using 3D Forward Modeling and Inversion. Minerals 2023, 13, 34. [Google Scholar] [CrossRef]
- Grombacher, D.; Maurya, P.K.; Lind, J.C.; Lane, J.; Auken, E. Rapid Mapping of Hydrological Systems in Tanzania Using a Towed Transient Electromagnetic System. Groundwater 2022, 60, 35–46. [Google Scholar] [CrossRef]
- Lin, J.; Chen, J.; Liu, F.; Zhang, Y. The Helicopter Time-Domain Electromagnetic Technology Advances in China. Surv. Geophys. 2021, 42, 585–624. [Google Scholar] [CrossRef]
- Maurya, P.K.; Christiansen, A.V.; Pedersen, J.; Auken, E. High Resolution 3D Subsurface Mapping Using a Towed Transient Electromagnetic System - tTEM: Case Studies. Near Surf. Geophys. 2020, 18, 249–259. [Google Scholar] [CrossRef]
- Li, R.; Hu, X.; Li, J. Pseudo-3D Constrained Inversion of Transient Electromagnetic Data for a Polarizable SMS Hydrothermal System in the Deep Sea. Stud. Geophys. Et Geod. 2018, 62, 512–533. [Google Scholar] [CrossRef]
- Yang, H.; Cai, H.; Liu, M.; Xiong, Y.; Long, Z.; Li, J.; Hu, X. Three-dimensional Inversion of Semi-airborne Transient Electromagnetic Data Based on Finite Element Method. Near Surf. Geophys. 2022, 20, 661–678. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, Y.; Li, D.; Wang, Y.; Ji, Y. Denoising Algorithm of Ground-Airborne Time-Domain Electromagnetic Method Based on Variational Bayesian-Based Adaptive Kalman Filter (VBAKF). J. Appl. Geophys. 2022, 202, 104674. [Google Scholar] [CrossRef]
- Barsukov, P.O.; Fainberg, E.B. Mapping Bedrock Topography and Moraine Deposits by Transient Electromagnetic Sounding: Oslo Graben, Norway. Near Surf. Geophys. 2020, 18, 123–133. [Google Scholar] [CrossRef]
- Bai, P.; Vignoli, G.; Hansen, T.M. 1D Stochastic Inversion of Airborne Time-Domain Electromagnetic Data with Realistic Prior and Accounting for the Forward Modeling Error. Remote Sens. 2021, 13, 3881. [Google Scholar] [CrossRef]
- Kong, R.; Hu, X.; Cai, H. Three-dimensional joint inversion of gravity and magnetic data using Gramian constraints and Gauss-Newton method. Chin. J. Geophys. 2023, 66, 3493–3513. [Google Scholar]
- Wang, X.; Cai, H.; Liu, L.; Revil, A.; Hu, X. Three-Dimensional Inversion of Long-Offset Transient Electromagnetic Method over Topography. Minerals 2023, 13, 908. [Google Scholar] [CrossRef]
- Belliveau, P.; Haber, E. Achieving Depth Resolution with Gradient Array Survey Data through Transient Electromagnetic Inversion. In Proceedings of the SEG International Exposition and Annual Meeting, Dallas, TX, USA, 16–21 October 2016; pp. 857–861. [Google Scholar] [CrossRef]
- Murzina, E.V.; Pospeev, A.V.; Seminskiy, I.K.; Buddo, I.V.; Nemtseva, D.B.; Emelianov, V.S.; Agafonov, Y.A. Features of High-Density Transient Electromagnetic Sounding Data Inversion under Oil and Gas Prospecting in the Nepa-Botuoba Anteclise Area. Jour 2022, 45, 137–151. [Google Scholar] [CrossRef]
- Li, R.; Zhuang, Q.; Yu, N.; Li, R.; Zhang, H. Improved Hybrid Particle Swarm Optimizer with Sine-Cosine Acceleration Coefficients for Transient Electromagnetic Inversion. Curr. Bioinform. 2021, 16, 60–76. [Google Scholar] [CrossRef]
- Li, R.; Yu, N.; Wang, X.; Liu, Y.; Cai, Z.; Wang, E. Model-Based Synthetic Geoelectric Sampling for Magnetotelluric Inversion with Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–14. [Google Scholar] [CrossRef]
- Asif, M.R.; Bording, T.S.; Maurya, P.K.; Zhang, B.; Fiandaca, G.; Grombacher, D.J.; Christiansen, A.V.; Auken, E.; Larsen, J.J. A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid Memetic Pretrained Factor Analysis-Based Deep Belief Networks for Transient Electromagnetic Inversion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Kozhevnikov, N.O.; Antonov, E.Y. Aftereffects in the Transient Electromagnetic Method: Inductively Induced Polarization. Russ. Geol. Geophys. 2021, 62, 1440–1448. [Google Scholar] [CrossRef]
- Grombacher, D.; Auken, E.; Foged, N.; Bording, T.; Foley, N.; Doran, P.T.; Mikucki, J.; Dugan, H.A.; Garza-Giron, R.; Myers, K.; et al. Induced Polarization Effects in Airborne Transient Electromagnetic Data Collected in the McMurdo Dry Valleys, Antarctica. Geophys. J. Int. 2021, 226, 1574–1583. [Google Scholar] [CrossRef]
- Wu, C.; Zou, C.; Wu, T.; Shen, L.; Zhou, J.; Tao, C. Experimental Study on the Detection of Metal Sulfide under Seafloor Environment Using Time Domain Induced Polarization. Mar. Geophys. Res. 2021, 42, 17. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Yu, Y.; Qiu, S.; Ji, Y. 3-D Full-Waveform Modeling and Analysis of Induced Polarization and Magnetic Viscosity Effect in Time-Domain Electromagnetic Method. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- He, Z.; Cai, H.; Li, S.; Xian, J.; Hu, X. Extracting IP Parameters of Rock Samples Using Machine Learning. Geophys. J. Int. 2023, 235, 862–878. [Google Scholar] [CrossRef]
- Ageev, V.V. On the Nature of Negative Values of Induced Polarization in the Transient Electromagnetic Process When Working with an Axial Electrical Installation on the Sea Shelf. Izv. Phys. Solid Earth 2023, 59, 328–336. [Google Scholar] [CrossRef]
- Aigner, L.; Katona, T.; Michel, H.; Ahmed, A.; Hermans, T.; Flores Orozco, A. Quantification of Clay Content Using the Transient Electromagnetic and Spectral Induced Polarization Method. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar]
- Fedeli, A.; Schenone, V.; Pastorino, M.; Randazzo, A. An LSTM Based Strategy for Data and Model Calibration in Subsurface Electromagnetic Imaging. In Proceedings of the 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 14–17 December 2022; pp. 1–3. [Google Scholar]
- Wu, F.; Fan, M.; Liu, W.; Liang, B.; Zhou, Y. An Efficient Time-Domain Electromagnetic Algorithm Based on LSTM Neural Network. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1322–1326. [Google Scholar] [CrossRef]
- Guo, L.; Song, G.; Wu, H. Complex-Valued Pix2pix—Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering. Electronics 2021, 10, 752. [Google Scholar] [CrossRef]
- Hu, K.; Wu, J.; Li, Y.; Lu, M.; Weng, L.; Xia, M. FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data. Mathematics 2022, 10, 1000. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, W.; Li, Z.; Wipf, D.P.; Yan, J. NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification. Adv. Neural Inf. Process. Syst. 2022, 35, 27387–27401. [Google Scholar]
- Chen, D.; Lin, Y.; Zhao, G.; Ren, X.; Li, P.; Zhou, J.; Sun, X. Topology-Imbalance Learning for Semi-Supervised Node Classification. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 29885–29897. [Google Scholar]
- Chen, Y.; Coskunuzer, B.; Gel, Y. Topological Relational Learning on Graphs. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 27029–27042. [Google Scholar]
- Chen, J.; He, H.; Wu, F.; Wang, J. Topology-Aware Correlations Between Relations for Inductive Link Prediction in Knowledge Graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 6271–6278. [Google Scholar] [CrossRef]
- Behera, R.K.; Jena, M.; Rath, S.K.; Misra, S. Co-LSTM: Convolutional LSTM Model for Sentiment Analysis in Social Big Data. Inf. Process. Manag. 2021, 58, 102435. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, X.; Yuan, H.; Zhang, J.; Zhou, M. A Hybrid Prediction Method for Realistic Network Traffic with Temporal Convolutional Network and LSTM. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1869–1879. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Hu, X.; Yuan, W.; Wang, P. Land-Based TEM Data Processing: From Turn-off Ramp to Full Waveform. Geophysics, 2022; Preprints. [Google Scholar]
- Li, R.; Gao, L.; Yu, N.; Li, J.; Liu, Y.; Wang, E.; Feng, X. Memetic Strategy of Particle Swarm Optimization for One-Dimensional Magnetotelluric Inversions. Mathematics 2021, 9, 519. [Google Scholar] [CrossRef]
- Nabighian, M.; projecteditor; Corbett, J. Electromagnetic Methods in Applied Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 1988. [Google Scholar]
- Wei, W.; Cai, J.; Hu, X.; Han, Q. An Electrical Conductivity Model for Fractal Porous Media: Fractal and Electrical Conductivity. Geophys. Res. Lett. 2015, 42, 4833–4840. [Google Scholar] [CrossRef]
- Madsen, L.M.; Fiandaca, G.; Auken, E.; Christiansen, A.V. Time-Domain Induced Polarization—An Analysis of Cole–Cole Parameter Resolution and Correlation Using Markov Chain Monte Carlo Inversion. Geophys. J. Int. 2017, 211, 1341–1353. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Zhuang, Q.; Li, R.; Chen, Y. BP Neural Network and Improved Differential Evolution for Transient Electromagnetic Inversion. Comput. Geosci. 2020, 137, 104434. [Google Scholar] [CrossRef]
- Li, R.; Yu, N.; Wang, E.; Wang, X.; Mao, L.; Sun, Z.; Wu, X. Airborne Transient Electromagnetic Simulation: Detecting Geoelectric Structures for HVdc Monopole Operation. IEEE Geosci. Remote Sens. Mag. 2021, 10, 274–288. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 13 June 2015. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Deepa, N.; Prabakeran, S.; Devi, T. (NMRNN-LSTM)—Novel Modified RNN with Long and Short-Term Memory Unit in Healthcare and Big Data Applications. In Proceedings of the 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), Bhubaneswar, India, 19–20 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Coleman, K.; Schroeder, A.; Ma, N.; Irwin, D.J.; Lee, E.B.; Shinohara, R.T.; Li, M. SpaGCN: Integrating Gene Expression, Spatial Location and Histology to Identify Spatial Domains and Spatially Variable Genes by Graph Convolutional Network. Nat. Methods 2021, 18, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 25–30 July 2020; pp. 639–648. [Google Scholar] [CrossRef]
- Li, G.; Knoop, V.L.; Van Lint, H. Multistep Traffic Forecasting by Dynamic Graph Convolution: Interpretations of Real-Time Spatial Correlations. Transp. Res. Part C: Emerg. Technol. 2021, 128, 103185. [Google Scholar] [CrossRef]
- Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. IEEE Trans. Intell. Transport. Syst. 2020, 21, 4883–4894. [Google Scholar] [CrossRef]
The Stack Depth | Loss | ||||
---|---|---|---|---|---|
Train | Valid | ||||
GCN + LSTM | 15 | 10 | 5 | 0.08 | 0.22 |
GCN | 9 | 6 | 3 | 0.12 | 1.86 |
LSTM | 6 | 4 | 2 | 12.94 | 3.17 |
MLP | 15 | 10 | 5 | 0.16 | 2.04 |
rho1 | rho2 | rho3 | rho4 | rho5 | |
---|---|---|---|---|---|
Synthetic | 50 | 300 | 100 | 500 | 200 |
GCN + LSTM | 49.72 | 294.01 | 99.01 | 516.67 | 198.07 |
GCN | 46.19 | 299.70 | 104.13 | 474.36 | 211.40 |
LSTM | 46.39 | 305.93 | 108.02 | 543.94 | 188.85 |
MLP | 48.96 | 341.54 | 107.87 | 426.10 | 210.80 |
h1 | h2 | h3 | h4 | - | |
Synthetic | 200 | 250 | 300 | 500 | |
GCN + LSTM | 197.80 | 246.51 | 289.21 | 488.01 | |
GCN | 182.96 | 244.69 | 270.20 | 472.07 | |
LSTM | 199.31 | 243.80 | 301.43 | 476.49 | |
MLP | 212.36 | 260.88 | 304.71 | 457.72 | |
c1 | c2 | c3 | c4 | c5 | |
Synthetic | - | - | 0.3 | 0.3 | - |
GCN + LSTM | - | - | 0.293 | 0.294 | - |
GCN | - | - | 0.279 | 0.286 | - |
LSTM | - | - | 0.280 | 0.272 | - |
MLP | - | - | 0.288 | 0.335 | - |
Hz | Vz | rho | Thickness (h) | c | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
GCN + LSTM | 2.80 | 10.31 | 3.60 | 12.91 | 2.09 | 2.48 | 2.61 | 2.93 | 7.84 | 1.45 |
GCN | 4.84 | 6.80 | 14.2 | 30.67 | 5.86 | 6.27 | 2.60 | 3.23 | 19.10 | 3.51 |
LSTM | 7.23 | 28.1 | 5.833 | 12.94 | 4.90 | 5.84 | 5.54 | 6.44 | 25.32 | 4.29 |
MLP | 19.86 | 72.9 | 21.72 | 60.44 | 8.17 | 9.01 | 6.55 | 8.15 | 20.54 | 3.90 |
rho1 | rho2 | rho3 | rho4 | rho5 | rho6 | rho7 | rho8 | rho9 | |
---|---|---|---|---|---|---|---|---|---|
Synthetic | 50 | 300 | 100 | 500 | 200 | 100 | 300 | 50 | 200 |
GCN + LSTM | 49.51 | 294.54 | 101.09 | 520.51 | 208.18 | 100.92 | 294.98 | 51.77 | 198.85 |
GCN | 54.36 | 319.12 | 104.57 | 467.58 | 194.41 | 93.78 | 270.07 | 48.16 | 207.98 |
LSTM | 49.32 | 311.66 | 95.14 | 450.98 | 201.29 | 95.59 | 326.77 | 54.06 | 195.71 |
MLP | 51.42 | 341.59 | 90.57 | 453.96 | 190.50 | 112.99 | 290.16 | 46.60 | 179.12 |
h1 | h2 | h3 | h4 | h5 | h6 | h7 | h8 | - | |
Synthetic | 200 | 250 | 300 | 500 | 300 | 100 | 200 | 300 | - |
GCN + LSTM | 208.09 | 238.33 | 300.97 | 510.82 | 290.38 | 98.37 | 193.75 | 294.66 | - |
GCN | 205.01 | 252.15 | 296.34 | 478.74 | 300.10 | 105.23 | 210.50 | 304.56 | - |
LSTM | 180.99 | 258.57 | 320.23 | 547.15 | 273.42 | 99.01 | 203.30 | 311.20 | - |
MLP | 193.83 | 240.60 | 266.80 | 490.26 | 263.24 | 103.44 | 170.66 | 306.59 | - |
c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 | |
Synthetic | - | 0.3 | - | 0.4 | - | 0.2 | - | 0.5 | - |
GCN + LSTM | - | 0.30 | - | 0.40 | - | 0.19 | - | 0.48 | - |
GCN | - | 0.31 | - | 0.40 | - | 0.18 | - | 0.47 | - |
LSTM | - | 0.31 | - | 0.39 | - | 0.18 | - | 0.55 | - |
MLP | - | 0.28 | - | 0.41 | - | 0.20 | - | 0.46 | - |
Hz | Vz | rho | Thickness (h) | c | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
GCN + LSTM | 1.13 | 1.66 | 1.78 | 3.61 | 1.56 | 1.86 | 2.12 | 2.33 | 0.89 | 1.41 |
GCN | 9.40 | 11.04 | 10.40 | 14.50 | 4.53 | 5.17 | 6.53 | 7.19 | 2.35 | 3.81 |
LSTM | 11.91 | 12.99 | 17.04 | 22.51 | 6.31 | 6.76 | 2.00 | 2.67 | 3.20 | 5.14 |
MLP | 10.93 | 11.79 | 24.69 | 42.50 | 8.79 | 10.05 | 5.13 | 5.72 | 3.12 | 5.52 |
HKH-Type Model | RMSE (%) | MAE (%) | Re-MAE |
---|---|---|---|
no noise | 14.07 | 4.04 | 4.04 |
5% noise | 20.31 | 9.91 | 4.91 |
10% noise | 31.59 | 17.68 | 7.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Di, Y.; Tian, H.; Gan, L. TEM Strata Inversion Imaging with IP Effect Based on Enhanced GCN by Extracting Long-Dependency Features. Electronics 2023, 12, 4138. https://doi.org/10.3390/electronics12194138
Li R, Di Y, Tian H, Gan L. TEM Strata Inversion Imaging with IP Effect Based on Enhanced GCN by Extracting Long-Dependency Features. Electronics. 2023; 12(19):4138. https://doi.org/10.3390/electronics12194138
Chicago/Turabian StyleLi, Ruiheng, Yi Di, Hao Tian, and Lu Gan. 2023. "TEM Strata Inversion Imaging with IP Effect Based on Enhanced GCN by Extracting Long-Dependency Features" Electronics 12, no. 19: 4138. https://doi.org/10.3390/electronics12194138
APA StyleLi, R., Di, Y., Tian, H., & Gan, L. (2023). TEM Strata Inversion Imaging with IP Effect Based on Enhanced GCN by Extracting Long-Dependency Features. Electronics, 12(19), 4138. https://doi.org/10.3390/electronics12194138