Utilizing Fractional Artificial Neural Networks for Modeling Cancer Cell Behavior
Abstract
:1. Introduction
- -
- The proposed method for observer-based synchronization in incommensurate fractional-order systems is based on a fractional recurrent neural network;
- -
- The proposed method is robust in the presence of uncertain orders;
- -
- A novel stability analysis for the stability of fractional-order systems is introduced;
- -
- The proposed stability analysis is applied to fractional-order systems with uncertain orders;
- -
- Based on the case study, a fractional-order updating rule is proposed for the designed artificial neural networks, which enhances the network’s performance.
2. Basic Definition
2.1. Mathematical Model of Cancer
2.2. Fractional-Order Systems
2.3. Numerical Method for Fractional-Order Systems
2.4. Fractional Version of Cancer System
3. Observer Design with Neural Networks
3.1. Observer-Based Synchronization
3.2. Structure of Observer-Based Synchronization with Neural Network
4. Stability Analysis and Weight Update Rule
4.1. Fundamental Principles of Stability in Fractional-Order Systems
4.2. Analysis of Updating Rules
5. Simulation and Implementation
6. Discussion
- *
- Fractional-order models can capture complex and nonlinear behaviors more accurately than traditional integer-order models. This improved accuracy can provide a more realistic representation of cancer dynamics.
- *
- Fractional-order models offer greater flexibility in representing a wide range of cancer-related phenomena, including tumor growth, metastasis and immune responses. They can adapt to changing conditions and parameters.
- *
- Fractional derivatives capture long memory effects, which are essential in modeling phenomena where past events significantly influence the present state, such as tumor evolution and treatment responses.
- *
- They can better simulate the multifaceted nature of cancer, accounting for factors like tumor heterogeneity, microenvironment interactions and varying cell behaviors.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, S.; Sarkar, R.R. Delay-induced model for tumor–immune interaction and control of malignant tumor growth. Biosystems 2008, 91, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.S.; Iarosz, K.C.; Ren, H.P.; Batista, A.M.; Baptista, M.S.; Viana, R.L.; Lopes, S.R.; Grebogi, C. Model for tumour growth with treatment by continuous and pulsed chemotherapy. Biosystems 2014, 116, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Pham, H. Mathematical modeling the time-delay interactions between tumor viruses and the immune system with the effects of chemotherapy and autoimmune diseases. Mathematics 2022, 10, 756. [Google Scholar] [CrossRef]
- Das, A.; Dehingia, K.; Sarmah, H.K.; Hosseini, K.; Sadri, K.; Salahshour, S. Analysis of a delay-induced mathematical model of cancer. Adv. Contin. Discret. Models 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Metzcar, J.; Wang, Y.; Heiland, R.; Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inf. 2019, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Byrne, H.; Alarcon, T.; Owen, M.; Webb, S.; Maini, P. Modelling aspects of cancer dynamics: A review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 1563–1578. [Google Scholar] [CrossRef]
- Osborne, J.M.; Walter, A.; Kershaw, S.K.; Mirams, G.R.; Fletcher, A.G.; Pathmanathan, P.; Gavaghan, D.; Jensen, O.E.; Maini, P.K.; Byrne, H.M. A hybrid approach to multi-scale modelling of cancer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5013–5028. [Google Scholar] [CrossRef]
- Ramadevi, B.; Bingi, K. Chaotic time series forecasting approaches using machine learning techniques: A review. Symmetry 2022, 14, 955. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Grassi, G.; Al-Hussein, A.B.A.; Tahir, F.R.; Saad, K.M.; Jahanshahi, H.; Aly, A.A. Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives. Comput. Math. Methods Med. 2022, 2022, 5227503. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Chen, G. Observer-based synchronization of time-delay complex-variable chaotic systems with complex parameters. Fractals 2022, 30, 2250197. [Google Scholar] [CrossRef]
- Mohammadi, S.; Hejazi, S.R. Using particle swarm optimization and genetic algorithms for optimal control of non-linear fractional-order chaotic system of cancer cells. Math. Comput. Simul. 2023, 206, 538–560. [Google Scholar] [CrossRef]
- Al-Nassir, S. Dynamic analysis of a harvested fractional-order biological system with its discretization. Chaos Solitons Fractals 2021, 152, 111308. [Google Scholar] [CrossRef]
- Debbouche, N.; Ouannas, A.; Momani, S.; Cafagna, D.; Pham, V.-T. Fractional-order biological system: Chaos, multistability and coexisting attractors. Eur. Phys. J. Spec. Top. 2021, 231, 1061–1070. [Google Scholar] [CrossRef]
- Srivastava, H.; Dubey, V.; Kumar, R.; Singh, J.; Kumar, D.; Baleanu, D. An efficient computational approach for a fractional-order biological population model with carrying capacity. Chaos Solitons Fractals 2020, 138, 109880. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, F.; Yu, Q.; Li, T. Review of fractional epidemic models. Appl. Math. Model. 2021, 97, 281–307. [Google Scholar] [CrossRef]
- Jajarmi, A.; Arshad, S.; Baleanu, D. A new fractional modelling and control strategy for the outbreak of dengue fever. Phys. A Stat. Mech. Its Appl. 2019, 535, 122524. [Google Scholar] [CrossRef]
- Tavazoei, M.S. Fractional order chaotic systems: History, achievements, applications, and future challenges. Eur. Phys. J. Spec. Top. 2020, 229, 887–904. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Q.; He, B.; Chen, Y.; Peng, X.; Mei, R. Adaptive predefined-time synchronization of two different fractional-order chaotic systems with time-delay. IEEE Access 2021, 9, 31908–31920. [Google Scholar] [CrossRef]
- Khan, A.; Khan, N. A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function. Math. Methods Appl. Sci. 2022, 45, 640–656. [Google Scholar] [CrossRef]
- Yousri, D.; AbdelAty, A.M.; Said, L.A.; Elwakil, A.; Maundy, B.; Radwan, A.G. Parameter identification of fractional-order chaotic systems using different meta-heuristic optimization algorithms. Nonlinear Dyn. 2019, 95, 2491–2542. [Google Scholar] [CrossRef]
- Rabah, K.; Ladaci, S. A fractional adaptive sliding mode control configuration for synchronizing disturbed fractional-order chaotic system. Circuits Syst. Signal Process. 2020, 39, 1244–1264. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Mohammadi, H.; Rezapour, S. On chaos of discrete time fractional order host-immune-tumor cells interaction model. J. Appl. Math. Comput. 2022, 68, 4795–4820. [Google Scholar] [CrossRef]
- Naik, P.A.; Zu, J.; Naik, M.-U.-D. Stability analysis of a fractional-order cancer model with chaotic dynamics. Int. J. Biomath. 2021, 14, 2150046. [Google Scholar] [CrossRef]
- Behinfaraz, R.; Badamchizadeh, M. Optimal synchronization of two different in-commensurate fractional-order chaotic systems with fractional cost function. Complexity 2016, 21, 401–416. [Google Scholar] [CrossRef]
- Behinfaraz, R.; Badamchizadeh, M.A. Synchronization of different fractional-ordered chaotic systems using optimized active control. In Proceedings of the 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Istanbul, Turkey, 27–29 May 2015; pp. 1–6. [Google Scholar]
- Sakthivel, R.; Kwon, O.; Selvaraj, P. Observer-based synchronization of fractional-order Markovian jump multi-weighted complex dynamical networks subject to actuator faults. J. Frankl. Inst. 2021, 358, 4602–4625. [Google Scholar] [CrossRef]
- Vasilyev, A.; Tarkhov, D. Mathematical models of complex systems on the basis of artificial neural networks. Nonlinear Phenom. Complex Syst. 2014, 17, 327–335. [Google Scholar]
- Li, P.; He, F.; Fan, B.; Song, Y. TPNet: A Novel Mesh Analysis Method via Topology Preservation and Perception Enhancement. Comput. Aided Geom. Des. 2023, 104, 102219. [Google Scholar] [CrossRef]
- Wu, H.; He, F.; Duan, Y.; Yan, X. Perceptual metric-guided human image generation. Integr. Comput.-Aided Eng. 2022, 29, 141–151. [Google Scholar] [CrossRef]
- Alfaro-Ponce, M.; Cruz, A.A.; Chairez, I. Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 483–494. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Ahn, C.K. Adaptive neural network-based observer design for switched systems with quantized measurements. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 5897–5910. [Google Scholar] [CrossRef]
- Tong, S.; Li, Y.; Liu, Y. Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F. Observer-based fixed-time neural control for a class of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 2892–2902. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.A.; Farhan, L.; Zhang, J.; Duan, Y. Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 2020, 9, 445. [Google Scholar] [CrossRef]
- Xie, X.; Fu, C.C.; Lv, L.; Ye, Q.; Yu, Y.; Fang, Q.; Zhang, L.; Hou, L.; Wu, C. Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Mod. Pathol. 2022, 35, 609–614. [Google Scholar] [CrossRef]
- Kag, A.; Saligrama, V. Time adaptive recurrent neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 15149–15158. [Google Scholar]
- Perrusquía, A.; Yu, W. Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview. Neurocomputing 2021, 438, 145–154. [Google Scholar] [CrossRef]
- Tabanfar, Z.; Ghassemi, F.; Bahramian, A.; Nouri, A.; Shad, E.G.; Jafari, S. Fractional-order systems in biological applications: Estimating causal relations in a system with inner connectivity using fractional moments. In Fractional-Order Design; Elsevier: Amsterdam, The Netherlands, 2022; pp. 275–299. [Google Scholar]
- Kumar Shukla, P.; Kumar Shukla, P.; Sharma, P.; Rawat, P.; Samar, J.; Moriwal, R.; Kaur, M. Efficient prediction of drug–drug interaction using deep learning models. IET Syst. Biol. 2020, 14, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-Qaness, M.A.; Damasevicius, R.; Elaziz, M.A. COVID-19 image classification using deep features and fractional-order marine predators algorithm. Sci. Rep. 2020, 10, 15364. [Google Scholar] [CrossRef]
- Matkovskyy, R.; Bouraoui, T. Application of neural networks to short time series composite indexes: Evidence from the nonlinear autoregressive with exogenous inputs (NARX) model. J. Quant. Econ. 2019, 17, 433–446. [Google Scholar] [CrossRef]
- El-Gohary, A.; Alwasel, I. The chaos and optimal control of cancer model with complete unknown parameters. Chaos Solitons Fractals 2009, 42, 2865–2874. [Google Scholar] [CrossRef]
- Wang, S.; Bekiros, S.; Yousefpour, A.; He, S.; Castillo, O.; Jahanshahi, H. Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method. Chaos Solitons Fractals 2020, 136, 109768. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, C.; Zhou, X.; Gui, W. Fractional-order PID controller tuning using continuous state transition algorithm. Neural Compu. Appl. 2018, 29, 795–804. [Google Scholar] [CrossRef]
- N’Doye, I.; Voos, H.; Darouach, M. Chaos in a fractional-order cancer system. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 171–176. [Google Scholar]
- Su, Y.; Kuo, C.-C.J. Recurrent neural networks and their memory behavior: A survey. APSIPA Trans. Signal Inf. Process. 2022, 11, e26. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
0.97 | 0.95 | 0.97 | 1 | 2.5 | 0.6 | 1.5 | 4.5 | 1 | 0.2 | 0.5 |
OSFO without order uncertainty | 0.0016 | 0.0024 | 0.0035 |
OSFO with order uncertainty () | 0.0048 | 0.0062 | 0.0068 |
OSFO with order uncertainty () | 0.0125 | 0.0162 | 0.0174 |
Method | |||
---|---|---|---|
OSFO with integer-order RNN | 0.0064 | 0.0073 | 0.0088 |
OSFO with fractional-order ANN | 0.0066 | 0.0084 | 0.0105 |
OSFO with fractional-order RNN | 0.0048 | 0.0062 | 0.0068 |
OSFO cancer system with Ref. [43] method | 1.2251 | 4.0245 | 2.3245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behinfaraz, R.; Ghavifekr, A.A.; De Fazio, R.; Visconti, P. Utilizing Fractional Artificial Neural Networks for Modeling Cancer Cell Behavior. Electronics 2023, 12, 4245. https://doi.org/10.3390/electronics12204245
Behinfaraz R, Ghavifekr AA, De Fazio R, Visconti P. Utilizing Fractional Artificial Neural Networks for Modeling Cancer Cell Behavior. Electronics. 2023; 12(20):4245. https://doi.org/10.3390/electronics12204245
Chicago/Turabian StyleBehinfaraz, Reza, Amir Aminzadeh Ghavifekr, Roberto De Fazio, and Paolo Visconti. 2023. "Utilizing Fractional Artificial Neural Networks for Modeling Cancer Cell Behavior" Electronics 12, no. 20: 4245. https://doi.org/10.3390/electronics12204245
APA StyleBehinfaraz, R., Ghavifekr, A. A., De Fazio, R., & Visconti, P. (2023). Utilizing Fractional Artificial Neural Networks for Modeling Cancer Cell Behavior. Electronics, 12(20), 4245. https://doi.org/10.3390/electronics12204245