Hybrid Game Trading Mechanism for Virtual Power Plant Based on Main-Side Consortium Blockchains
Abstract
:1. Introduction
2. Main-Side Consortium Blockchain Governance Structure and Node Deployment
2.1. Main-Side Consortium Blockchain Governance Structure
2.2. Virtual Power Plant and Prosumer Blockchain Node Model
2.2.1. Virtual Power Plant Node Model
2.2.2. Prosumer Node Model
3. Designing a Two-Tier Energy Trading Mechanism for VPP–Prosumer Based on Main-Side Consortium Blockchain Structure
3.1. Design of Side Chain Smart Contracts
3.2. Main Chain Transaction Process Design
3.3. Block Data Structure Design
4. Example Analysis
4.1. Calculation Parameters
4.2. Programme Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yin, S.; Ai, Q.; Song, P.; Zhao, J.; Zuo, J.; Guo, Q. Research and Prospect of Hierarchical Interactive Mode and Trusted Transaction Framework for Virtual Power Plants. Autom. Electr. Power Syst. 2022, 46, 118–128. [Google Scholar]
- Li, Y.; Wu, Y.; Xu, R. Research on distribution network scheduling with smart load and distributed energy access. Power Syst. Prot. Control. 2018, 46, 116–123. [Google Scholar]
- Zhang, G.; Wang, X.; Jiang, C. Stackelberg Game Based Coordinated Dispatch of Virtual Power Plant Considering Electric Vehicle Management. Dianli Xitong Zidonghua/Autom. Electr. Power Syst. 2018, 42, 48–55. [Google Scholar]
- Fang, Y.Q.; Gan, L.; Ai, Q.; Fan, S.L.; Cai, Y. Stackelberg Game Based Bi-level Bidding Strategy for Virtual Power Plant. Autom. Electr. Power Syst. 2017, 41, 61–69. [Google Scholar]
- Chen, L.; Liu, N.; Li, C.; Wang, J. Peer-to-peer energy sharing with social attributes: A stochastic leader–follower game approach. IEEE Trans. Ind. Inform. 2020, 17, 2545–2556. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, H.; Xu, Z.; Zheng, Y. Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game. Energy Eng. 2023, 120, 1163–1183. [Google Scholar] [CrossRef]
- Tushar, W.; Saha, T.K.; Yuen, C.; Morstyn, T.; Poor, H.V.; Bean, R. Grid Influenced P2P Energy Trading. IEEE Trans. Smart Grid 2019, 11, 1407–1418. [Google Scholar] [CrossRef]
- Muthoo, A.; Osborne, M.J.; Rubinstein, A. Bargaining and Markets. Economica 1991, 58, 408. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Bahrami, S.; Wong, V.W. Direct energy trading of microgrids in distribution energy market. Trends Ecol. Evol. 2019, 35, 639–651. [Google Scholar]
- Liu, Y.; Fan, Y.; Bai, X.; Song, Y. Virtual Power Plant Model and Scheduling Strategy Based on Optimized Computing Block-Chain System. Trans. China Electrotech. Soc. 2023, 38, 4178–4191. [Google Scholar]
- Zhang, N.; Wang, Y.; Kang, C.; Cheng, J.; He, D.W. Blockchain technique in the energy internet: Preliminary research framework and typical applications. Proc. CSEE 2016, 36, 4011–4022. [Google Scholar]
- Wang, B.; Li, Y.; Zhao, S.; Chen, H.; Jin, Y.; Ding, Y. Key technologies on blockchain based distributed energy transaction. Autom. Electr. Power Syst. 2019, 43, 53–64. [Google Scholar]
- Ye, L.C.; Rodrigues, J.F.; Lin, H.X. Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016. Appl. Energy 2017, 203, 496–505. [Google Scholar] [CrossRef]
- Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based Energy Management and Sharing in Smart Grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [Google Scholar] [CrossRef]
- Liu, J.; Tang, Z.; Zeng, P.; Li, Y.; Wu, Q. Adaptive Planning of Transmission Network Coordinating Distribution Networks in a Hierarchical Manner With High Penetration of Renewable Energy. Power Syst. Technol. 2022, 46, 3105–3114. [Google Scholar]
- Li, G.; Li, Q.; Liu, Y.; Liu, H.; Song, W.; Ding, R. A cooperative Stackelberg game based energy management considering price discrimination and risk assessment. Int. J. Electr. Power Energy Syst. 2022, 135, 107461. [Google Scholar] [CrossRef]
(CNY) | Prosumer 1 | Prosumer 2 | Prosumer 3 | Prosumer Total Cost | VPP Total Cost | |
---|---|---|---|---|---|---|
Scheme I | Total Cost | −73,423.24 | −161,492.03 | 1,202,360.19 | 967,444.92 | −157,436.32 |
(Interactive Cost) | −37,681.32 | −73,634.19 | 111,315.51 | |||
Scheme II | −39,812.27 | −99,495.11 | 1,438,653.56 | 1,299,346.18 | −186,479.26 | |
Total | −33,610.97 | −61,996.92 | −236,293.37 | −331,901.26 | 29,042.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Qiu, Z.; Cai, Y.; Tao, W.; Ai, Q.; Wang, D. Hybrid Game Trading Mechanism for Virtual Power Plant Based on Main-Side Consortium Blockchains. Electronics 2023, 12, 4269. https://doi.org/10.3390/electronics12204269
Yu Z, Qiu Z, Cai Y, Tao W, Ai Q, Wang D. Hybrid Game Trading Mechanism for Virtual Power Plant Based on Main-Side Consortium Blockchains. Electronics. 2023; 12(20):4269. https://doi.org/10.3390/electronics12204269
Chicago/Turabian StyleYu, Zhiwen, Zhaoming Qiu, Ying Cai, Weijian Tao, Qian Ai, and Di Wang. 2023. "Hybrid Game Trading Mechanism for Virtual Power Plant Based on Main-Side Consortium Blockchains" Electronics 12, no. 20: 4269. https://doi.org/10.3390/electronics12204269
APA StyleYu, Z., Qiu, Z., Cai, Y., Tao, W., Ai, Q., & Wang, D. (2023). Hybrid Game Trading Mechanism for Virtual Power Plant Based on Main-Side Consortium Blockchains. Electronics, 12(20), 4269. https://doi.org/10.3390/electronics12204269