An Enhanced DOA Estimation Method for Coherent Sources via Toeplitz Matrix Reconstruction and Khatri–Rao Subspace
Abstract
:1. Introduction
2. Signal Model
3. Toeplitz Matrix Reconstruction Method
4. The Proposed Method
4.1. Khatri–Rao Processing Criterion
4.2. The Number of Sources Which Can Be Estimated
4.3. Dimension Reduction
Algorithm 1: Pseudocode of the proposed DOA estimation method | |
Input: Array output vector, . | |
Output: Estimated signal source DOAs, . | |
1: | Apply instead of (2) to calculate the output covariance matrix. |
2: | Construct the Toeplitz matrix with full rank corresponding to the i-th row vector of the covariance matrix using (3). |
3: | Perform the Khatri–Rao processing criterion to obtain the reconstructed matrix with aperture extension using (11) and (12). |
4: | The reconstructed matrix with dimension reduction is obtained using (25)–(27). |
5: | Obtain the reconstructed covariance with better noise suppression ability using (28) and (29). |
6: | Perform TLS-ESPRIT (total least squares ESPRIT) to estimate the DOAs of the signal sources. |
5. Simulation Results
5.1. Estimated Source Number Verfication
5.2. Estimation Performance versus SNR
5.3. Estimation Performance versus Snapshots
5.4. Estimation Performance versus Angular Separation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Godara, L.C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proc. IEEE 1997, 85, 1195–1245. [Google Scholar] [CrossRef]
- Kim, S.; Oh, D.; Lee, J. Joint DFT-ESPRIT Estimation for TOA and DOA in Vehicle FMCW Radars. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1710–1713. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, J.; Kim, Y.; Chung, J. Direction-of-Arrival Estimation of Far-Field Sources Under Near-Field Interferences in Passive Sonar Array. IEEE Access 2021, 9, 28413–28420. [Google Scholar] [CrossRef]
- Amin, M.G.; Wang, X.; Zhang, Y.D.; Ahmad, F.; Aboutanios, E. Sparse Arrays and Sampling for Interference Mitigation and DOA Estimation in GNSS. Proc. IEEE 2016, 104, 1302–1317. [Google Scholar] [CrossRef]
- Yan, H.; Fan, H. On source association of DOA estimation under multipath propagation. IEEE Signal Process. Lett. 2005, 12, 717–720. [Google Scholar]
- Xie, W.; Wen, F.; Liu, J.; Wan, Q. Source Association, DOA, and Fading Coefficients Estimation for Multipath Signals. IEEE Trans. Signal Process. 2017, 65, 2773–2786. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 806–811. [Google Scholar] [CrossRef]
- Pillai, S.; Kwon, B. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. [Google Scholar] [CrossRef]
- Choi, Y.-H. On conditions for the rank restoration in forward/backward spatial smoothing. IEEE Trans. Signal Process. 2002, 50, 2900–2901. [Google Scholar] [CrossRef]
- Wen, J.; Liao, B.; Guo, C. Spatial smoothing based methods for direction-of-arrival estimation of coherent signals in nonuniform noise. Digit. Signal Process. 2017, 67, 116–122. [Google Scholar] [CrossRef]
- Du, W.; Kirlin, R. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Trans. Signal Process. 1991, 39, 1208–1210. [Google Scholar] [CrossRef]
- Pan, J.; Sun, M.; Wang, Y.; Zhang, X. An Enhanced Spatial Smoothing Technique with ESPRIT Algorithm for Direction of Arrival Estimation in Coherent Scenarios. IEEE Trans. Signal Process. 2020, 68, 3635–3643. [Google Scholar] [CrossRef]
- Vincent, F.; Besson, O.; Chaumette, E. Approximate Unconditional Maximum Likelihood Direction of Arrival Estimation for Two Closely Spaced Targets. IEEE Signal Process. Lett. 2015, 22, 86–89. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, W.; Wu, Q. Weighted Subspace Fitting for Two-Dimension DOA Estimation in Massive MIMO Systems. IEEE Access 2017, 5, 14020–14027. [Google Scholar] [CrossRef]
- Das, A. Deterministic and Bayesian Sparse Signal Processing Algorithms for Coherent Multipath Directions-of-Arrival (DOAs) Estimation. IEEE J. Ocean. Eng. 2019, 44, 1150–1164. [Google Scholar] [CrossRef]
- Uehashi, S.; Ogawa, Y.; Nishimura, T.; Ohgane, T. Prediction of Time-Varying Multi-User MIMO Channels Based on DOA Estimation Using Compressed Sensing. IEEE Trans. Veh. Technol. 2019, 68, 565–577. [Google Scholar] [CrossRef]
- Das, A.; Hodgkiss, W.S.; Gerstoft, P. Coherent Multipath Direction-of-Arrival Resolution Using Compressed Sensing. IEEE J. Ocean. Eng. 2017, 42, 494–505. [Google Scholar] [CrossRef]
- Chen, H.; Hou, C.-P.; Wang, Q.; Huang, L.; Yan, W.-Q. Cumulants-Based Toeplitz Matrices Reconstruction Method for 2-D Coherent DOA Estimation. IEEE Sens. J. 2014, 14, 2824–2832. [Google Scholar] [CrossRef]
- Shi, H.; Li, Z.; Liu, D.; Chen, H. Efficient method of two-dimensional DOA estimation for coherent signals. EURASIP J. Wirel. Commun. Netw. 2017, 53, 1–10. [Google Scholar] [CrossRef]
- Han, F.-M.; Zhang, X.-D. An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 443–446. [Google Scholar]
- Zhang, W.; Han, Y.; Jin, M.; Li, X.-S. An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation. IEEE Commun. Lett. 2020, 24, 339–343. [Google Scholar] [CrossRef]
- Zhang, W.; Han, Y.; Jin, M.; Qiao, X. Multiple-Toeplitz Matrices Reconstruction Algorithm for DOA Estimation of Coherent Signals. IEEE Access 2019, 7, 49504–49512. [Google Scholar] [CrossRef]
- Qi, B.B.; Li, W. An Improved Multiple-Toeplitz Matrices Reconstruction Algorithm for DOA Estimation of Coherent Signals. Radioengineering 2021, 30, 532–539. [Google Scholar] [CrossRef]
- Qi, B. DOA estimation of the coherent signals using beamspace matrix reconstruction. Signal Process. 2021, 191, 108349. [Google Scholar] [CrossRef]
- Ma, W.; Hsieh, T.; Chi, C. DOA estimation of quasi-stationary signals via Khatri-Rao subspace. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 2165–2168. [Google Scholar]
- Ma, W.-K.; Hsieh, T.-H.; Chi, C.-Y. DOA Estimation of Quasi-Stationary Signals With Less Sensors Than Sources and Unknown Spatial Noise Covariance: A Khatri–Rao Subspace Approach. IEEE Trans. Signal Process. 2010, 58, 2168–2180. [Google Scholar] [CrossRef]
- Fang, Y.; Zhu, S.; Gao, Y.; Zeng, C. DOA Estimation for Coherent Signals With Improved Sparse Representation in the Presence of Unknown Spatially Correlated Gaussian Noise. IEEE Trans. Veh. Technol. 2020, 69, 10059–10069. [Google Scholar] [CrossRef]
- Viberg, M.; Stoica, P.; Ottersten, B. Maximum likelihood array processing in spatially correlated noise fields using parameterized signals. IEEE Trans. Signal Process. 1997, 45, 996–1004. [Google Scholar] [CrossRef]
- Wang, Y.; Trinkle, M.; Ng, B.W.H. Two-stage DOA estimation of independent and coherent signals in spatially coloured noise. Signal Process. 2016, 128, 350–359. [Google Scholar] [CrossRef]
- Mei, D.; Shouhong, Z.; Xiangdong, W.; Huanying, Z. A High Resolution Spatial Smoothing Algorithm. In Proceedings of the 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 16–17 August 2007; pp. 1031–1034. [Google Scholar]
- Bachl, R. The forward-backward averaging technique applied to TLS-ESPRIT processing. IEEE Trans. Signal Process. 1995, 43, 2691–2699. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, H.; Zhang, X. Time-frequency DOA estimation of chirp signals based on multi-subarray. Digit. Signal Process. 2021, 113, 103031. [Google Scholar] [CrossRef]
- Huang, L.; Long, T.; Mao, E.; So, H.C. MMSE-Based MDL Method for Accurate Source Number Estimation. IEEE Signal Process. Lett. 2009, 16, 798–801. [Google Scholar] [CrossRef]
- Chang, C.-I.; Du, Q. Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 608–619. [Google Scholar] [CrossRef]
- Belouchrani, A.; Amin, M.G. Time-frequency MUSIC. IEEE Signal Process. Lett. 1999, 6, 109–110. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. Performance comparison of subspace rotation and MUSIC methods for direction estimation. IEEE Trans. Signal Process. 1991, 39, 446–453. [Google Scholar] [CrossRef]
Algorithm | Computational Complexity |
---|---|
FOSS/FBSS | |
FB-PTMR | |
MTOEP | |
ESPRIT-like | |
The proposed method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, B.; Liu, X.; Dou, D.; Zhang, Y.; Hu, R. An Enhanced DOA Estimation Method for Coherent Sources via Toeplitz Matrix Reconstruction and Khatri–Rao Subspace. Electronics 2023, 12, 4268. https://doi.org/10.3390/electronics12204268
Qi B, Liu X, Dou D, Zhang Y, Hu R. An Enhanced DOA Estimation Method for Coherent Sources via Toeplitz Matrix Reconstruction and Khatri–Rao Subspace. Electronics. 2023; 12(20):4268. https://doi.org/10.3390/electronics12204268
Chicago/Turabian StyleQi, Bingbing, Xiaogang Liu, Daowei Dou, Yan Zhang, and Runze Hu. 2023. "An Enhanced DOA Estimation Method for Coherent Sources via Toeplitz Matrix Reconstruction and Khatri–Rao Subspace" Electronics 12, no. 20: 4268. https://doi.org/10.3390/electronics12204268
APA StyleQi, B., Liu, X., Dou, D., Zhang, Y., & Hu, R. (2023). An Enhanced DOA Estimation Method for Coherent Sources via Toeplitz Matrix Reconstruction and Khatri–Rao Subspace. Electronics, 12(20), 4268. https://doi.org/10.3390/electronics12204268