Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education
Abstract
:1. Introduction
2. Related Work
2.1. VR Systems for Education
2.2. Interaction Methods in Immersive Environments
2.3. Comparative Studies for Interaction Elements
3. System Overview
4. Implementation
5. Experiment and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas-Sánchez, M.A.; Palos-Sánchez, P.R.; Folgado-Fernández, J.A. Systematic literature review and bibliometric analysis on virtual reality and education. Educ. Inf. Technol. 2023, 28, 155–192. [Google Scholar] [CrossRef]
- Chang, C.; Sung, H.; Guo, J.; Chang, B.; Kuo, F. Effects of spherical video-based virtual reality on nursing students’ learning performance in childbirth education training. Interact. Learn. Environ. 2022, 30, 400–416. [Google Scholar] [CrossRef]
- Rafael, V.; Sergio, T.; Ramon, C.; Jose, A. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educ. Res. Rev. 2022, 35, 100434. [Google Scholar]
- Fitria, T. Augmented Reality (AR) and Virtual Reality (VR) Technology in Education: Media of Teaching and Learning: A Review. Int. J. Comput. Inf. Syst. 2023, 4, 14–25. [Google Scholar]
- Shin, K.-S.; Kim, H.; Lee, J.; Jo, D. Exploring the effects of scale and color difference on users’ perception for everyday mixed reality (MR) experience: Toward comparative analysis using MR devices. Electronics 2020, 9, 1623. [Google Scholar] [CrossRef]
- Marougkas, A.; Troussas, C.; Krouska, A.; Sgouropoulou, C. Virtual reality in education: A review of learning theories, approaches, and methodologies for the last decade. Electronics 2023, 12, 2832. [Google Scholar] [CrossRef]
- Campos, E.; Hidrogo, I.; Zavala, G. Impact of virtual reality use on the teaching and learning of vectors. Front. Educ. 2022, 7, 965640. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, W.; Li, S.; Chen, K. Augmented and Virtual Reality (AR/VR) for Education and Training in the AEC Industry: A Systematic Review of Research and Applications. Buildings 2022, 12, 1529. [Google Scholar] [CrossRef]
- Webb, M.; Tracey, M.; Harwin, W.; Tokatli, O.; Hwang, F.; Johnson, R.; Barrett, N.; Jones, C. Haptic-enabled collaborative learning in virtual reality for schools. Educ. Inf. Technol. 2022, 27, 937–960. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Jo, D. Exploring the Effect on Passive Haptic Perception in Virtual Environments. Appl. Sci. 2022, 13, 299. [Google Scholar] [CrossRef]
- Vosinaks, S.; Koutsabasis, P. Evaluation of visual feedback techniques for virtual grasping with bare hands using Leap Motion and Oculus Rift. Springer Virtual Real. 2018, 22, 47–62. [Google Scholar] [CrossRef]
- Cauquis, J.; Mercado, R.; Casiez, G.; Normand, J.; Lecuyer, A. “Kapow!”: Studying the design of visual feedback for representing contacts in extended reality. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology (VRST), Tsukuba, Japan, 29 November–1 December 2022. [Google Scholar]
- Hou, Z.; Kim, K.; Zhang, G.; Li, P. A study on the realization of virtual simulation face based on artificial intelligence. J. Inf. Commun. Converg. Eng. 2023, 21, 152–158. [Google Scholar] [CrossRef]
- Cao, X.; Hsu, Y. Systematic review and meta-analysis of the impact of virtual experiments on students’ learning effectiveness. Interact. Learn. Environ. 2022, 1–22. [Google Scholar] [CrossRef]
- Yoon, D.; Oh, A. Design of metaverse for two-way video conferencing platform based on virtual reality. J. Inf. Commun. Converg. Eng. 2022, 20, 189–194. [Google Scholar] [CrossRef]
- Solidjonov, D. Immersive augmented reality and virtual reality technology for education. Involta Sci. J. 2022, 1, 249–256. [Google Scholar]
- Kaminska, D.; Zwolinski, G.; Lesniewicz, A.; Raposo, R.; Vairinhos, M.; Pereira, E.; Urem, F.; Hinic, M.; Haamer, R.; Anbarjafari, G. Augmented reality: Current and new trends in education. Electronics 2023, 12, 3531. [Google Scholar] [CrossRef]
- Pathan, R.; Rajendran, R.; Murthy, S. Mechanism to capture learner’s interaction in VR-based learning environment: Design and application. Smart Learn. Environ. 2020, 7, 35. [Google Scholar] [CrossRef]
- Oliveira, V.; Sarmiento, W.; Maciel, A.; Nedal, L.; Collazos, C. Does vibrotactile intercommunication increase collaboration? In Proceedings of the IEEE Virtual Reality, Arles, France, 23–27 March 2015.
- Sarmiento, W.; Maciel, A.; Nedel, L.; Collazos, C. Measuring the collaboration degree in immersive 3D collaborative virtual environments. In Proceedings of the International Workshop on Collaborative Virtual Environments (3DCVE), Minneapolis, MN, USA, 30 March 2014. [Google Scholar]
- Hamilton, D.; Mckechnie, J.; Edgerton, E.; Wilson, C. Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. J. Comput. Educ. 2021, 8, 1–32. [Google Scholar] [CrossRef]
- Matovu, H.; Ungu, D.; Won, M.; Tsai, C.; Treagust, D.; Mocerino, M.; Tasker, R. Immersive virtual reality for science learning: Design, implementation, and evaluation. Stud. Sci. Educ. 2023, 59, 205–244. [Google Scholar] [CrossRef]
- Ihsani, A.; Sukardi, S.; Soenarto, S.; Agustin, E. Augmented reality (AR)-based smartphone application as student learning media for javanese wedding make up in central java. J. Inf. Commun. Converg. Eng. 2021, 19, 248–256. [Google Scholar]
- Han, D.T.; Suhail, M.; Ragan, E.D. Evaluating remapped physical reach for hand interactions with passive haptics in virtual reality. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1467–1476. [Google Scholar] [CrossRef]
- Azmandian, M.; Hancock, M.; Benko, H.; Ofek, E.; Wilson, A.D. Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016. [Google Scholar]
- Lee, M.; Norouzi, N.; Bruder, G. The physical-virtual table: Exploring the effects of a virtual human’s physical influence on social interaction. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST), Tokyo, Japan, 28 November–1 December 2018. [Google Scholar]
- Langbehn, E.; Lubos, P.; Bruder, G.; Steinicke, F. Application of redirected walking in room-scale VR. In Proceedings of the IEEE Virtual Reality, Los Angeles, CA, USA, 18–22 March 2017. [Google Scholar]
- Yu, D.; Liang, H.; Lu, F.; Nanjappan, V.; Papangelis, K.; Wang, W. Target selection in head-mounted display virtual reality environments. J. Univers. Comput. Sci. 2018, 24, 1217–1243. [Google Scholar]
- Marquardt, A.; Maiero, J.; Kruijff, E.; Trepkowski, C.; Schwandt, A.; Hinkenjann, A.; Schöning, J.; Stuerzlinger, W. Tactile hand motion and pose guidance for 3D interaction. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST), Tokyo, Japan, 28 November–1 December 2018. [Google Scholar]
- Li, Z.; Cao, Y.; Luo, J. Application of virtual reality technology in the chemistry teaching process. In Proceedings of the 2022 2nd International Conference on Education, Information Management and Service Science, Changsha, China, 22–24 July 2022; pp. 1253–1258. [Google Scholar]
- Laricheva, E.; Ilikchyan, A. Exploring the Effect of Virtual Reality on Learning in General Chemistry Students with Low Visual-Spatial Skills. J. Chem. Educ. 2023, 100, 589–596. [Google Scholar] [CrossRef]
- Jumani, A.; Siddique, W.; Laghari, A.; Ahad, A. Virtual reality and augmented reality for education. In Multimedia Computing Systems and Virtual Reality; CRC Press: Boca Raton, FL, USA, 2022; pp. 189–210. [Google Scholar]
- Kim, M.; Jeon, C.; Kim, J. A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors 2017, 17, 1141. [Google Scholar] [CrossRef] [PubMed]
- Turchet, L.; Burelli, P.; Serafin, S. Haptic feedback for enhancing realism of walking simulations. IEEE Trans. Haptics 2012, 6, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.; Oliveira, V.; Vilaca, J.; Carvalho, V.; Duque, D. Measuring the precision of the Oculus Quest 2’s handheld controller. Actuators 2023, 12, 257. [Google Scholar] [CrossRef]
- Gunkel, S.; Stokking, H.; Prins, M.; Stap, N.; Harr, F.; Niamut, O. Virtual reality conferencing: Multi-user immersive VR experiences on the web. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018. [Google Scholar]
- Singh, N.; Sharma, B.; Sharma, A. Performance analysis and optimization techniques in Unity3D. In Proceedings of the 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 October 2022. [Google Scholar]
- Huang, H.; Liaw, S. An analysis of learners’ intentions toward virtual reality learning based on constructivist and technology acceptance approaches. Int. Rev. Res. Open Distrib. Learn. 2018, 19. [Google Scholar] [CrossRef]
Test Conditions | Feedback | Comparative Examples |
---|---|---|
Visual | Color change | Original color vs. changed color |
Object halo | No change vs. halo effect | |
Scale transformation | No change vs. size change | |
Deformable body object | No change vs. shape change | |
Non-visual | Audio | No audio feedback vs. audio output |
Haptics | No haptics vs. a sense of touch |
Experiment Conditions by Interactions | Learning Effects | ||
---|---|---|---|
Phase 1 | Typical 2D class vs. Immersive VR class | Interest Understanding Preference Remembering | |
Phase 2 | Visual | Scale transformation (Breathing animation) | |
Deformable body object (Physical shape interaction) | |||
Audio (Non-visual) | Audio feedback |
Interest | Understanding | Preference | Remembering | |
---|---|---|---|---|
Strongly Agree | 3.4% | 6.9% | 1.7% | 5.2% |
Agree | 31.0% | 29.3% | 24.1% | 29.3% |
Somewhat agree | 58.6% | 48.3% | 69.0% | 60.3% |
Neutral | 6.9% | 15.5% | 5.2% | 5.2% |
Somewhat disagree | 0.0% | 0.0% | 0.0% | 0.0% |
Disagree | 0.0% | 0.0% | 0.0% | 0.0% |
Strongly disagree | 0.0% | 0.0% | 0.0% | 0.0% |
Group | Class | Mean | t | Sig. |
---|---|---|---|---|
Interest | Off | 5.31 | −2.564 | 0.012 |
On | 5.76 | |||
Understanding | Off | 5.28 | −1.985 | 0.050 |
On | 5.66 | |||
Preference | Off | 5.22 | −2.233 | 0.027 |
On | 5.64 | |||
Remembering | Off | 5.34 | −1.603 | 0.112 |
On | 5.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.-S.; Cho, C.; Ryu, J.H.; Jo, D. Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education. Electronics 2023, 12, 4414. https://doi.org/10.3390/electronics12214414
Shin K-S, Cho C, Ryu JH, Jo D. Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education. Electronics. 2023; 12(21):4414. https://doi.org/10.3390/electronics12214414
Chicago/Turabian StyleShin, Kwang-Seong, Chungyeon Cho, Ji Hyun Ryu, and Dongsik Jo. 2023. "Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education" Electronics 12, no. 21: 4414. https://doi.org/10.3390/electronics12214414
APA StyleShin, K. -S., Cho, C., Ryu, J. H., & Jo, D. (2023). Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education. Electronics, 12(21), 4414. https://doi.org/10.3390/electronics12214414