Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis
Abstract
:1. Introduction
2. The Image Histogram
3. Threshold Segmentation Based on the OTSU Algorithm
3.1. The OTSU Algorithm
3.2. Multi-Threshold Segmentation Based on the OTSU Algorithm
3.3. Limitations of OTSU Algorithm for Multi-Threshold Segmentation
4. Fast Segmentation Based on the Histogram Technology
4.1. Histogram Curve
4.2. Threshold Segmentation Based on the Minimum Point of the Histogram Curve
4.3. Result of Threshold Segmentation Based on the Minimum Point of the Histogram Curve
4.4. Result of Multi-Threshold Segmentation Based on OTSU
4.5. Result of the Region Growing Segmentation Method
5. Discussion
5.1. Comparison of Different Segmentation Algorithms
5.2. Adaptability of Images with Different Grayscale Values
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borsotti, M.; Campadelli, P.; Schettini, R. Quantitative evaluation of color image segmentation results. Pattern Recognit. Lett. 1998, 19, 741–747. [Google Scholar] [CrossRef]
- Cardoso, J.S.; Corte-Real, L. Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 2005, 11, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, K.C.; Udupa, J.K. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frame-works. Comput. Vis. Image Underst. 2011, 115, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Crevier, D. Image segmentation algorithm development using ground truth image data sets. Comput. Vis. Image Underst. 2008, 112, 143–159. [Google Scholar] [CrossRef]
- Erdem, C.E.; Sankur, B.; Tekalp, A.M. Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 2004, 13, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zheng, Q.; Liang, C. Overview of Image Segmentation Methods. J. Wuhan Univ. Nat. Sci. Ed. 2020, 66, 519–531. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, F. Survey on image segmentation methods. Appl. Res. Comput. 2017, 34, 1922–1928. [Google Scholar]
- Zhang, Y.; Yuan, J.; Liu, H. Overview of Image Segmentation Algorithm. Comput. Sci. 2015, 42, 29–32. [Google Scholar]
- Ma, R.; Zeng, W.; Song, G.; Yin, Q.; Xu, Z. Pythagorean fuzzy C-means algorithm for image segmentation. Int. J. Intell. Syst. 2021, 36, 1223–1243. [Google Scholar] [CrossRef]
- Glasbey, C.A. An analysis of histogram based thresholding algorithm. CVGIP Graph. Models Image Process. 1993, 55, 532–537. [Google Scholar] [CrossRef]
- Hashemi, S.E.; Gholian-Jouybari, F.; Hajiaghaei-Keshteli, M. A Fuzzy C-Means Algorithm for Optimizing Data Clustering. Expert Syst. Appl. 2023, 227, 120377. [Google Scholar] [CrossRef]
- Chang, C.I.; Chen, K.; Wang, J.; Althouse, M.L. A relative entropy-based approach to image thresholding. Pattern Recognit. 1994, 27, 1275–1289. [Google Scholar] [CrossRef]
- Ramon, L.C.; Varsheny, P.K. Image thresholding based on Ali-Silvey distance measures. Pattern Recognit. 1994, 30, 1161–1174. [Google Scholar]
- Sahoo, P.K.; Wilkings, C.; Yeages, J. Threshold selection using Renyi’s entropy. Pattern Recognit. 1994, 30, 71–84. [Google Scholar] [CrossRef]
- Lewng, C.K.; Lam, F.K. Maximum segmental image information thresholding. CVGIP Graph. Models Image Process. 1998, 60, 57–76. [Google Scholar] [CrossRef]
- Ge, F.; Wang, S.; Liu, T. New benchmark for image segmentation evaluation. J. Electron. Imaging 2007, 16, 033011. [Google Scholar]
- Hao, J.; Shen, Y.; Xu, H.; Zou, J. A Region Entropy Based Objective Evaluation Method for Image Segmentation. In Proceedings of the IEEE International Conference on Instrumentation and Measurement Technology, Singapore, 5–7 May 2009; pp. 373–377. [Google Scholar]
- Guo, Q.; Wang, Y.; Yang, S.; Xiang, Z. A method of blasted rock image segmentation based on improved watershed algorithm. Sci. Rep. 2022, 12, 7143. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Wang, H.; Sun, Y.; Zhao, F.; Zhang, X. A modified fuzzy clustering algorithm based on dynamic relatedness model for image segmentation. Vis. Comput. Int. J. Comput. Graph. 2023, 39, 1583–1596. [Google Scholar] [CrossRef]
- Xu, G.; Feng, C.; Ma, F. Review of Medical Image Segmentation Based on UNet. J. Front. Comput. Sci. Technol. 2023, 17, 1776–1792. [Google Scholar]
- Hrdina, J.; Matoušek, R.; Tichý, R. Scopus Preview—Colour Image Segmentation by Region Growing Based on Conformal Geometric Algebra (Conference Paper); Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 11542, pp. 564–570. [Google Scholar]
- Zhou, J.; Yang, M. Bone Region Segmentation in Medical Images Based on Improved Watershed Algorithm. Comput. Intell. Neurosci. 2022, 2022, 3975853. [Google Scholar] [CrossRef]
- Jiang, F.; Gu, Q.; Hao, H.Z.; Li, N.; Guo, Y.W.; Chen, D.X. Survey on content-based image segmentation methods. Ruan Jian Xue Bao/J. Softw. 2017, 28, 160–183. (In Chinese) [Google Scholar]
- Rajakani, K.; Abdulsahib, A.K.; Kamaruddin, S.S.; Jabar, M.M. A Double Clustering Approach for Color Image Segmentation. Wirel. Commun. Mob. Comput. 2023, 2023, 1039870. [Google Scholar]
- Xing, Y.; Zhong, L.; Zhong, X. Study of Clustering Algorithms in Object Tracking and Image Segmentation. Wirel. Commun. Mob. Comput. 2022, 2022, 1530–8669. [Google Scholar] [CrossRef]
- Deeparani, K.; Sudhakar, P. Efficient image segmentation and implementation of K-means clustering. Mater. Today Proc. 2021, 45, 8076–8079. [Google Scholar] [CrossRef]
- Li, T.; Xu, Y.; Luo, J.; He, J.; Lin, S. Region-Growing Algorithm on CT Angiography Images for Detection of Gynecological Malignant Tumor. Sci. Program. 2021, 2021, 1–7. [Google Scholar]
- Raja, J.A.; Babu, N.K. Adaptive Region Growing Image Segmentation Algorithms for Breast MRI. Int. J. Recent Technol. Eng. 2019, 8, 8729–8732. [Google Scholar] [CrossRef]
- Haralick, R.; Shapiro, L.G. Survey: Image segmentation techniques. CVGIP Graph. Models Image Process. 1985, 29, 100–132. [Google Scholar] [CrossRef]
- Hoover, A.; Jean-Baptiste, G.; Jiang, X.; Flynn, P.J.; Bunke, H.; Goldgof, D.B.; Fisher, R.B. An experimental comparison of range segmentation algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 673–689. [Google Scholar] [CrossRef]
- Kadapala, B.K.R.; Hakeem, K.A. Region Growing based Automatic Localized Adaptive Thresholding Algorithm for Water Extraction using Sentinel-2 MSI Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1. [Google Scholar] [CrossRef]
- Lee, S.U.; Chung, S.Y.; Park, R.H. A comparative performance study of several global thresholding techniques for segmentation. Comput. Vis. Image Underst. 1990, 52, 171–190. [Google Scholar] [CrossRef]
- Lei, T.; Udupa, J.K. Performance evaluation of finite normal model-based image segmentation technique. IEEE Trans. Image Process. 2003, 12, 1163–1169. [Google Scholar]
- Martin, A.; Laanaya, H.; Arnold-Bos, A. Evaluation for uncertain image classification and segmentation. Pattern Recognit. 2006, 39, 1987–1995. [Google Scholar] [CrossRef]
- Ortiz, A.; Oliver, G. On the use of overlapping area matrix for image segmentation evaluation: A survey and new performance measures. Pattern Recognit. Lett. 2006, 27, 1916–1926. [Google Scholar] [CrossRef]
- Peng, R.; Varshney, P.K. On performance limits of image segmentation algorithms. Comput. Vis. Image Underst. 2015, 132, 24–38. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Pantofaru, C.; Hebert, M. Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 929–944. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Dong, H.; Gu, H.; Yang, J.; Konz, N.; Zhang, Y. Segment anything model for medical image analysis: An experimental study. Med. Image Anal. 2023, 89, 102918. [Google Scholar] [CrossRef]
- Hu, C.; Li, X. When SAM Meets Medical Images: An Investigation of Segment Anything Model (SAM) on Multi-phase Liver Tumor Segmentation. arXiv 2023, arXiv:2304.08506. [Google Scholar]
- Friebel, A.; Johann, T.; Drasdo, D.; Hoehme, S. Guided interactive image segmentation using machine learning and color-based image set clustering. Bioinformatics 2022, 38, btac547. [Google Scholar] [CrossRef]
- Vojodi, H.; Fakhari, A.; Moghadam AM, E. A new evaluation measure for color image segmentation based on genetic programming approach. Image Vis. Comput. 2013, 31, 877–886. [Google Scholar] [CrossRef]
- Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 2008, 110, 260–280. [Google Scholar] [CrossRef]
- Ju, Z.; Xue, Y.; Zhang, W.; Zhai, C. Algorithm for detecting pomegranate disease spots based on Prewitt operator with adaptive threshold. Transactions of the Chinese Society of Agricultural Engineering. Trans. Chin. Soc. Agric. Eng. 2020, 36, 135–142. [Google Scholar]
- Prakash, N.; Basha, S.A.; Chowdhury, S.; Reshmi, B.; Kapila, D.; Devi, S. Implementation of Image Segmentation with Prewitt Edge Detection using VLSI Technique. In Proceedings of the 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 15–16 July 2022. [Google Scholar]
- Min, L.; Wang, H.; Jiao, J. A Review of the Optical Remote Sensing Image Segmentation Technology. Spacecr. Recovery Remote Sens. 2020, 41, 1–13. (In Chinese) [Google Scholar]
- Hsu, C.Y.; Shao, L.J.; Tseng, K.K.; Huang, W.T. Moon image segmentation with a new mixture histogram model. Enterp. Inf. Syst. 2021, 15, 1046–1069. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Deng, S.; Zhou, C. Color image segmentation using adaptive hierarchical-histogram thresholding. PLoS ONE 2020, 15, e0226345. [Google Scholar] [CrossRef] [PubMed]
- Naderi Boldaji, M.R.; Hosseini Semnani, S. Color image segmentation using multi-objective swarm optimizer and multi-level histogram thresholding. Multimed. Tools Appl. 2022, 81, 30647–30661. [Google Scholar] [CrossRef]
- Li, Y.K.; Yang, S.W.; Liu, T. An automatic threshold selection approach for remote sensing imagery of multimodal histograms. J. Lanzhou Jiaotong Univ. 2013, 32, 199–204. [Google Scholar]
- Liu, G.; Zhang, Z.; Cui, X.; Kuang, J.; Cai, J.; Ji, X. Chromosome Image Segmentation Based on OTSU and Region Growing Algorithm. In Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China, 19–21 August 2022. [Google Scholar]
- Suryani, E.; Asmari, E.I.; Harjito, B. Image Segmentation of Acute Myeloid Leukemia Using Multi Otsu Thresholding. J. Phys. Conf. Ser. 2021, 1803, 012016. [Google Scholar] [CrossRef]
- Li, H.; Yao, L.; Shi, L. Automatic selection of image threshold based on improved Otsu. Comput. Simul. 2007, 24, 216–220. [Google Scholar]
- Xu, X.Y.; Song, E.M.; Jin, L.H. Characteristic analysis of threshold based on Otsu criterion. Acta Electron. Sin. 2009, 37, 2716–2719. [Google Scholar]
- Qu, K.; Zheng, L. Automatic thresholding of gray-scale image based on the proportion of object and background. Appl. Sci. Technol. 2010, 37, 52–54. [Google Scholar]
- Wu, B.; Zhou, J.; Ji, X.; Yin, Y.; Shen, X. An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inf. Sci. 2020, 533, 72–107. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, Y.; Zhang, H.; Lei, Y.; Zhang, J. OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Appl. Sci. 2022, 12, 11514. [Google Scholar] [CrossRef]
No. | Methods | Segmentation Time | UPH | Segmentation Accuracy |
---|---|---|---|---|
1 | the OTSU double threshold | 2.936 s | <1 K | poor |
2 | Multi-threshold segmentation based on OTSU | >2.936 s | <1 k | good |
3 | Region growing segmentation method | 9.016 s | <0.4 K | best |
4 | Threshold segmentation based on the minimum point of the histogram curve | 0.0129 s | ≥70 K | good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Chen, S.; Gao, X.; Ye, Q.; Ke, Y.; Huo, C.; Liu, X. Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis. Electronics 2023, 12, 4446. https://doi.org/10.3390/electronics12214446
Xu M, Chen S, Gao X, Ye Q, Ke Y, Huo C, Liu X. Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis. Electronics. 2023; 12(21):4446. https://doi.org/10.3390/electronics12214446
Chicago/Turabian StyleXu, Mingjin, Shaoshan Chen, Xiaopeng Gao, Qing Ye, Yongsheng Ke, Cong Huo, and Xiaohong Liu. 2023. "Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis" Electronics 12, no. 21: 4446. https://doi.org/10.3390/electronics12214446
APA StyleXu, M., Chen, S., Gao, X., Ye, Q., Ke, Y., Huo, C., & Liu, X. (2023). Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis. Electronics, 12(21), 4446. https://doi.org/10.3390/electronics12214446