Enhancing Outdoor Moving Target Detection: Integrating Classical DSP with mmWave FMCW Radars in Dynamic Environments
Abstract
:1. Introduction
- Development of computationally inexpensive MTD algorithm.
- Tackle data variations in range-Doppler data through classical DSP techniques.
- Develop a low-cost edge deployed radar-based MTD system
2. System Description
2.1. Radar Signal Processing Pipeline
2.1.1. Wavelet Denoising
2.1.2. Doppler Filtering
2.1.3. Peak Detection
3. Experiment, Results, and Discussion
3.1. Experimental Setup
3.2. Experimental Results
- Accuracy (Acc.), Acc = TP+TN/TP+TN+FP+FN, indicates the correctness of the classifications.
- Precision (PR), PR = TP/TP+FP, indicates how many predicted positive labels are positive.
- Sensitivity (SE), SE = TP/TP+FN, indicates how much a model is accurate to predict the positive class
- Specificity (SP), SP= TN/TN+FP, indicates how much a model is accurate to predict the negative class.
3.3. Comparison with Similar Techniques
3.4. Comparison Based on Computational Complexity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, S.S.; Agarwal, R.; Bharath, K.; Rao, S.; Thakur, C.S. TinyRadar: MmWave radar based human activity classification for edge computing. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2414–2417. [Google Scholar]
- Lee, M.J.; Kim, J.E.; Ryu, B.H.; Kim, K.T. Robust Maritime Target Detector in Short Dwell Time. Remote Sens. 2021, 13, 1319. [Google Scholar] [CrossRef]
- Petrovskaya, A.; Thrun, S. Model based vehicle detection and tracking for autonomous urban driving. Auton. Robot. 2009, 26, 123–139. [Google Scholar] [CrossRef]
- Goswami, P.; Rao, S.; Bharadwaj, S.; Nguyen, A. Real-time multi-gesture recognition using 77 GHz FMCW MIMO single chip radar. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4. [Google Scholar]
- Yan, H.; Chen, C.; Jin, G.; Zhang, J.; Wang, X.; Zhu, D. Implementation of a modified faster R-CNN for target detection technology of coastal defense radar. Remote Sens. 2021, 13, 1703. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Hu, Y.; Li, D.; Wang, J.; Al-Dhahir, N. Pain without Gain: Destructive Beamforming from A Malicious RIS Perspective in IoT Networks. IEEE Internet Things J. 2023; early access. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, R.; Sengupta, A.; Cao, S.; Hariri, S.; Agarwal, N.K.; Agarwal, S.K. Multiple patients behavior detection in real-time using mmWave radar and deep CNNs. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Jiang, W.; Ren, Y.; Liu, Y.; Leng, J. Artificial neural networks and deep learning techniques applied to radar target detection: A review. Electronics 2022, 11, 156. [Google Scholar] [CrossRef]
- Liang, S.; Chen, R.; Duan, G.; Du, J. Deep learning-based lightweight radar target detection method. J. Real-Time Image Process. 2023, 20, 61. [Google Scholar] [CrossRef]
- Kavitha, V.; Prabakar, D.; subramanian, S.R.; Balambigai, S. Radar optical communication for analysing aerial targets with frequency bandwidth and clutter suppression by boundary element mmwave signal model. Opt. Quantum Electron. 2023, 55, 1142. [Google Scholar] [CrossRef]
- Renhe, L.; Renli, Z.; Tiancheng, L.; Weixing, S. ISRJ identification method based on Chi-square test and range equidistant detection. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Kuang, C.; Wang, C.; Wen, B.; Hou, Y.; Lai, Y. An improved CA-CFAR method for ship target detection in strong clutter using UHF radar. IEEE Signal Process. Lett. 2020, 27, 1445–1449. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Doviak, R.J. Ground clutter detection using the statistical properties of signals received with a polarimetric radar. IEEE Trans. Signal Process. 2013, 62, 597–606. [Google Scholar] [CrossRef]
- Chen, X.; Guan, J.; Bao, Z.; He, Y. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1002–1018. [Google Scholar] [CrossRef]
- Anghel, A.; Vasile, G.; Cacoveanu, R.; Ioana, C.; Ciochina, S. Short-range wideband FMCW radar for millimetric displacement measurements. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5633–5642. [Google Scholar] [CrossRef]
- Iyer, N.C.; Pillai, P.; Bhagyashree, K.; Mane, V.; Shet, R.M.; Nissimagoudar, P.; Krishna, G.; Nakul, V. Millimeter-wave AWR1642 RADAR for obstacle detection: Autonomous vehicles. In Proceedings of the Innovations in Electronics and Communication Engineering: Proceedings of the 8th ICIECE 2019, Hyderabad, India, 2–3 August 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–94. [Google Scholar]
- Jeng, S.L.; Chieng, W.H.; Lu, H.P. Estimating speed using a side-looking single-radar vehicle detector. IEEE Trans. Intell. Transp. Syst. 2013, 15, 607–614. [Google Scholar] [CrossRef]
- Jankiraman, M. FMCW Radar Design; Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Richards, M.A. Fundamentals of Radar Signal Processing; Mcgraw-Hill: New York, NY, USA, 2005; Volume 1. [Google Scholar]
- Tavanti, E.; Rizik, A.; Fedeli, A.; Caviglia, D.D.; Randazzo, A. A short-range FMCW radar-based approach for multi-target human-vehicle detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 2003816. [Google Scholar] [CrossRef]
- Su, B.Y.; Ho, K.; Rantz, M.J.; Skubic, M. Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 2014, 62, 865–875. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.Y.; Kim, S.C. Mutual interference suppression using wavelet denoising in automotive FMCW radar systems. IEEE Trans. Intell. Transp. Syst. 2019, 22, 887–897. [Google Scholar] [CrossRef]
- Jin, Y.; Duan, Y. 2d wavelet decomposition and fk migration for identifying fractured rock areas using ground penetrating radar. Remote Sens. 2021, 13, 2280. [Google Scholar] [CrossRef]
- Fitasov, E.; Legovtsova, E.; Pal’guev, D.; Kozlov, S.; Saberov, A.; Borzov, A.; Vasil’ev, D. Experimental estimation of the projection method of the doppler filtering of radar signals when detecting air objects with low radial velocities. Radiophys. Quantum Electron. 2022, 64, 300–308. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Peng, Y.N.; Xia, X.G. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1202. [Google Scholar] [CrossRef]
- Papić, V.D.; Đurović, Ž.M.; Kvaščev, G.S.; Tadić, P.R. A new approach to Doppler filter adaptation in radar systems. In Proceedings of the 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers, Belgrade, Serbia, 22–24 November 2011; pp. 707–714. [Google Scholar]
- Kim, J.Y.; Park, J.H.; Jang, S.Y.; Yang, J.R. Peak detection algorithm for vital sign detection using Doppler radar sensors. Sensors 2019, 19, 1575. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Vaccari, A.; Acton, S. Speckle removal and change preservation by distance-driven anisotropic diffusion of synthetic aperture radar temporal stacks. Digit. Signal Process. 2018, 74, 43–55. [Google Scholar] [CrossRef]
- Pirkani, A.; Pooni, S.; Cherniakov, M. Implementation of mimo beamforming on an ots fmcw automotive radar. In Proceedings of the 2019 20th International Radar Symposium (IRS), Ulm, Germany, 26–28 June 2019; pp. 1–8. [Google Scholar]
- Python Releases for Windows. Available online: https://www.python.org/downloads/windows/ (accessed on 24 June 2021).
- Dai, Y.; Liu, D.; Hu, Q.; Yu, X. Radar Target Detection Algorithm Using Convolutional Neural Network to Process Graphically Expressed Range Time Series Signals. Sensors 2022, 22, 6868. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tong, N.; Zhang, Y.; Feng, W.; Liu, C. Moving Target Detection Classifier for Airborne Radar Using SqueezeNet. J. Phys. Conf. Ser. 2021, 1883, 012003. [Google Scholar] [CrossRef]
- Tang, X.; Chen, W.; Zhu, W. Radar emitter recognition method based on AdaBoost and decision tree. In Proceedings of the 2017 2nd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2017), Beijing, China, 25–26 March 2017; pp. 326–330. [Google Scholar]
- Patel, K.; Rambach, K.; Visentin, T.; Rusev, D.; Pfeiffer, M.; Yang, B. Deep learning-based object classification on automotive radar spectra. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Xie, R.; Sun, Z.; Wang, H.; Li, P.; Rui, Y.; Wang, L.; Bian, C. Low-resolution ground surveillance radar target classification based on 1D-CNN. In Proceedings of the Eleventh International Conference on Signal Processing Systems, Chengdu, China, 15–17 November 2019; Volume 11384, pp. 199–204. [Google Scholar]
- Xie, R.; Dong, B.; Li, P.; Rui, Y.; Wang, X.; Wei, J. Automatic target recognition method for low-resolution ground surveillance radar based on 1D-CNN. In Proceedings of the Twelfth International Conference on Signal Processing Systems, Shanghai, China, 6–9 November 2021; Volume 11719, pp. 48–55. [Google Scholar]
- Jiang, W.; Ren, Y.; Liu, Y.; Leng, J. A method of radar target detection based on convolutional neural network. Neural Comput. Appl. 2021, 33, 9835–9847. [Google Scholar] [CrossRef]
- Wen, M.; Zheng, B.; Kim, K.J.; Di Renzo, M.; Tsiftsis, T.A.; Chen, K.C.; Al-Dhahir, N. A survey on spatial modulation in emerging wireless systems: Research progresses and applications. IEEE J. Sel. Areas Commun. 2019, 37, 1949–1972. [Google Scholar] [CrossRef]
- Li, J.; Dang, S.; Wen, M.; Li, Q.; Chen, Y.; Huang, Y.; Shang, W. Index modulation multiple access for 6G communications: Principles, applications, and challenges. IEEE Netw. 2023, 37, 52–60. [Google Scholar] [CrossRef]
- Turpin, J.P.; Sieber, P.E.; Werner, D.H. Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1456–1459. [Google Scholar] [CrossRef]
S No. | Metrics | Values |
---|---|---|
1 | Accuracy (Acc.) | 0.920 |
2 | Precision (PR) | 0.915 |
3 | Sensitivity (SE) | 0.970 |
4 | Specificity (SP) | 0.818 |
S No. | Framework | Detection | Peak Accuracy | |||
---|---|---|---|---|---|---|
Features | Architecture | First Environment | Second Environment | Third Environment | ||
1 | This work | Range-Doppler | Doppler filter with thresholding | 91.2% | 90.8% | 91.3% |
2 | Yan Dai, et al. [34] | Range-Doppler | CNN | 98.7% | 90.6% | 87.6% |
3 | Li, et al. [35] | Range-Doppler | SqueezeNet | 99.75% | 96.12% | 95.23% |
4 | Tang, et al. [36] | Range-Doppler | AdaBoost | 93.78% | 90.11% | 89.23% |
5 | Patel, et al. [37] | Range-Doppler | CNN | 98.11% | 91.20% | 88.23% |
6 | Xie, et al. [38] | Range-Doppler | 1D-CNN | 98.0% | 97.2% | 96.3% |
7 | Xie, et al. [39] | Range-Doppler | 1D-CNN | 99.0% | 98.1% | 97.8% |
8 | Jiang, et al. [40] | Raw data | CNN | 98.5% | 97.7% | 96.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, D.; Melige, N.V.; Pal, B.; Gangopadhyay, A. Enhancing Outdoor Moving Target Detection: Integrating Classical DSP with mmWave FMCW Radars in Dynamic Environments. Electronics 2023, 12, 5030. https://doi.org/10.3390/electronics12245030
Chowdhury D, Melige NV, Pal B, Gangopadhyay A. Enhancing Outdoor Moving Target Detection: Integrating Classical DSP with mmWave FMCW Radars in Dynamic Environments. Electronics. 2023; 12(24):5030. https://doi.org/10.3390/electronics12245030
Chicago/Turabian StyleChowdhury, Debjyoti, Nikhitha Vikram Melige, Biplab Pal, and Aryya Gangopadhyay. 2023. "Enhancing Outdoor Moving Target Detection: Integrating Classical DSP with mmWave FMCW Radars in Dynamic Environments" Electronics 12, no. 24: 5030. https://doi.org/10.3390/electronics12245030
APA StyleChowdhury, D., Melige, N. V., Pal, B., & Gangopadhyay, A. (2023). Enhancing Outdoor Moving Target Detection: Integrating Classical DSP with mmWave FMCW Radars in Dynamic Environments. Electronics, 12(24), 5030. https://doi.org/10.3390/electronics12245030