Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network
Abstract
:1. Introduction
- We proposed a fusion method to integrate the fingerprint information from the embedded light sensor, magnetometer, and Wi-Fi sensor in a commercial off-the-shelf Android device for indoor localization. The method does not require heavy equipment or expensive infrastructure, so it can be quickly deployed for a new region of interest.
- We utilized a DFF neural network model as a tool for analyzing and detecting specific signal features within the fingerprint signals collected from the embedded sensors in commercially available mobile devices. By leveraging the DFF model, we achieved significant improvements compared to conventional fingerprint localization schemes. The proposed method demonstrates a potential for practical application in real-world scenarios.
- We assessed the varying impacts of fingerprint data, such as light-illumination-level signals, magnetic field strengths, and Wi-Fi signals, on localization performance. We conducted a series of comparative experiments to analyze the contribution of each sensor type. Through the results obtained, one can establish criteria to determine sensor combinations adaptively for diverse application scenarios.
2. Related Works
3. Proposed DFF-WGL Framework
3.1. System Description
3.2. Data Preprocessing
3.2.1. Filtering for Light Illumination Level Data and Wi-Fi RSS Data
3.2.2. Data Augmentation
3.2.3. Normalization for MFS signal
3.2.4. Feature-Level Fusion for Multiple Sensor data
3.3. Structure of DFF Networks
3.4. Generation of Location Estimate
4. Experiments and Analysis
4.1. System Description
4.2. Fingerprint Correlation Analysis
4.3. Impact of Different Sensor Combinations
4.4. Impact of Learning Rate
4.5. Performance in Real-Time Localization
4.6. Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davidson, P.; Piché, R. A survey of selected indoor positioning methods for smartphones. IEEE Commun. Surv. Tutor. 2017, 19, 1347–1370. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2015, 18, 466–490. [Google Scholar] [CrossRef]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 2022, 25, 1–45. [Google Scholar] [CrossRef]
- Naser, R.S.; Lam, M.C.; Qamar, F.; Zaidan, B.B. Smartphone-based indoor localization systems: A systematic literature review. Electronics 2023, 12, 1814. [Google Scholar] [CrossRef]
- He, S.; Kang, G.S. Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons. ACM Comput. Surv. 2017, 50, 1–37. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, M.X.; Wang, J.Q.; Luo, H.Y.; Sun, L.; Ma, Z.C.; Li, W.; Zhang, C.Y.; Huang, R.; Li, X.D.; et al. Recent advances in pedestrian inertial navigation based on smartphone: A review. IEEE Sens. J. 2022, 22, 22319–22343. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, B.; Yang, S.; Kim, Y. Geometric midpoint algorithm for device-free localization in low-density wireless sensor networks. Electronics 2021, 10, 2924. [Google Scholar] [CrossRef]
- Sun, C.; Zhou, J.; Jang, K.-S.; Kim, Y. Intelligent mesh cluster algorithm for device-free localization in wireless sensor networks. Electronics 2023, 12, 3426. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, C.; Jang, K.; Yang, S.; Kim, Y. Human activity recognition based on continuous-wave radar and bidirectional gate recurrent unit. Electronics 2023, 12, 4060. [Google Scholar] [CrossRef]
- Yang, S.; Kim, Y. Single 24-GHz FMCW radar-based indoor device-free human localization and posture sensing with CNN. IEEE Sens. J. 2023, 23, 3059–3068. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.; Kim, Y. Deep Learning-Based Device-Free Localization Scheme for Simultaneous Estimation of Indoor Location and Posture Using FMCW Radars. Sensors 2022, 22, 4447. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Gao, Y.; Wang, S.; Li, D.; Xu, Y. CRISLoc: Reconstructable CSI fingerprinting for indoor smartphone localization. IEEE Internet Things J. 2021, 8, 3422–3437. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, R.; Li, W.; Yu, Y.; Zhou, H.; Yan, K. Indoor positioning based on walking-surveyed Wi-Fi fingerprint and corner reference trajectory-geomagnetic database. IEEE Sens. J. 2021, 21, 18964–18977. [Google Scholar] [CrossRef]
- Luo, R.C.; Hsiao, T.J. Indoor localization system based on hybrid Wi-Fi/BLE and hierarchical topological fingerprinting approach. IEEE Trans. Veh. Technol. 2019, 68, 10791–10806. [Google Scholar] [CrossRef]
- Shu, M.; Chen, G.; Zhang, Z.; Xu, L. Indoor geomagnetic positioning using direction-aware multiscale recurrent neural networks. IEEE Sens. J. 2023, 23, 3321–3333. [Google Scholar] [CrossRef]
- Hou, L.; Li, Y.; Zhuang, Y.; Zhou, B.; Tsai, G.-J.; Luo, Y.; El-Sheimy, N. Orientation-aided stochastic magnetic matching for indoor localization. IEEE Sens. J. 2020, 20, 1003–1010. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Xu, S.; Yang, H.; Zhang, K. Indoor geomagnetic positioning using the enhanced genetic algorithm-based extreme learning machine. IEEE Trans. Instrum. Meas. 2021, 70, 2508611. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X. Visible light localization using conventional light fixtures and smartphones. IEEE Trans. Mob. Comput. 2019, 18, 2968–2983. [Google Scholar] [CrossRef]
- Hussain, B.; Wang, Y.; Chen, R.; Cheng, H.C.; Yue, C.P. Lidr: Visible-light-communication-assisted dead reckoning for accurate indoor localization. IEEE Internet Things J. 2022, 9, 15742–15755. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Z.; Liu, Y. Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 2015, 14, 444–457. [Google Scholar] [CrossRef]
- Zhao, W.; Han, S.; Hu, R.Q.; Meng, W.; Jia, Z. Crowdsourcing and multisource fusion-based fingerprint sensing in smartphone localization. IEEE Sens. J. 2018, 18, 3236–3247. [Google Scholar] [CrossRef]
- Rajab, A.M.; Wang, B. Automatic radio map database maintenance and updating based on crowdsourced samples for indoor localization. IEEE Sens. J. 2022, 22, 575–588. [Google Scholar] [CrossRef]
- Caso, G.; Nardis, L.D.; Benedetto, M.D. Low-complexity offline and online strategies for Wi-Fi fingerprinting indoor positioning systems. In Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation; Academic Press: New York, NY, USA, 2019; pp. 129–145. [Google Scholar]
- Hernández, N.; Ocaña, M.; Alonso, J.M.; Kim, E. Continuous space estimation: Increasing WiFi-based indoor localization resolution without increasing the site-survey effort. Sensors 2017, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Wang, X.; Chen, Z.; Zhu, J.; Zhang, S. Fingerprint augment based on super-resolution for Wi-Fi fingerprint based indoor localization. IEEE Sens. J. 2022, 22, 12152–12162. [Google Scholar] [CrossRef]
- Ni, K.S.; Nguyen, T.Q. Adaptable K-nearest neighbor for image interpolation. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1297–1300. [Google Scholar]
- Gürbüz, S.Z.; Erol, B.; Çagliyan, B.; Tekeli, B. Operational assessment and adaptive selection of micro-Doppler features. IET Radar Sonar Navigat. 2015, 9, 1196–1204. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, B.; Bao, S.; Liu, X.; Gu, Z.; Li, L.; Zhao, Y.; Zhu, J.; Lia, Q. A data-driven inertial navigation/bluetooth fusion algorithm for indoor positioning. IEEE Sens. J. 2021, 22, 5288–5301. [Google Scholar] [CrossRef]
- Li, P.; Yang, X.; Yin, Y.; Gao, S.; Niu, Q. Smartphone-based indoor localization with integrated fingerprint signal. IEEE Access 2020, 8, 33178–33187. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Chen, L.; Li, W.; Wu, Y.; Zhou, H. Autonomous 3D indoor localization based on crowdsourced Wi-Fi fingerprinting and MEMS sensors. IEEE Sens. J. 2021, 22, 5248–5259. [Google Scholar] [CrossRef]
- Zou, H.; Chen, Z.; Jiang, H.; Xie, L.; Spanos, C. Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 27–30 March 2017; pp. 1–4. [Google Scholar]
- Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [Google Scholar] [CrossRef]
- Shi, L.F.; Wang, Y.; Liu, G.X.; Chen, S.; Zhao, Y.L.; Shi, Y.F. A fusion algorithm of indoor positioning based on PDR and RSS fingerprint. IEEE Sens. J. 2018, 18, 9691–9698. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liu, Q.; Yin, Y.; Cheng, L.; Zimmermann, R. Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective. IEEE Trans. Multimed. 2017, 19, 874–888. [Google Scholar] [CrossRef]
- Yang, F.; Gou, L.; Cai, X. Pedestrian positioning scheme based on the fusion of smartphone IMU sensors and commercially surveillance video. IEEE Sens. J. 2022, 22, 4697–4708. [Google Scholar] [CrossRef]
- Sebkhi, N.; Sahadat, N.; Hersek, S.; Bhavsar, A.; Siahpoushan, S.; Ghoovanloo, M.; Inan, O.T. A deep neural network-based permanent magnet localization for tongue tracking. IEEE Sens. J. 2019, 19, 9324–9331. [Google Scholar] [CrossRef]
- Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Capsalis, C.N. A deep learning method for modeling the magnetic signature of spacecraft equipment using multiple magnetic dipoles. IEEE Magn. Lett. 2021, 12, 2100905. [Google Scholar] [CrossRef]
- Qin, Y.; Lv, B.; Dai, H.; Han, J. An hFFNN-LM based real-time and high precision magnet localization method. IEEE Trans. Instrum. Meas. 2022, 71, 2509009. [Google Scholar] [CrossRef]
- Numan, P.E.; Park, H.; Laoudias, C.; Horsmanheimo, S.; Kim, S. Smartphone-based indoor localization via network learning with fusion of FTM/RSSI measurements. IEEE Netw. Lett. 2023, 5, 21–25. [Google Scholar] [CrossRef]
- Lee, N.; Han, D. Magnetic indoor positioning system using deep neural network. In Proceedings of the 8th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Shao, W.; Luo, H.; Zhao, F.; Ma, Y.; Zhao, Z.; Crivello, A. Indoor positioning based on fingerprint-image and deep learning. IEEE Access 2018, 6, 74699–74712. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, J.; Chen, J.; Deng, Y.; Wang, X.; Aghvami, A.H. Indoor localization fusing WiFi with smartphone inertial sensors using LSTM networks. IEEE Internet Things J. 2021, 8, 13608–13623. [Google Scholar] [CrossRef]
- Yu, D.; Li, C.; Xiao, J. Neural networks-based Wi-Fi/PDR indoor navigation fusion methods. IEEE Trans. Instrum. Meas. 2023, 72, 2503514. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; Mao, S. DeepML: Deep LSTM for Indoor Localization with Smartphone Magnetic and Light Sensors. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Alexander, B.; Ivan, T.; Denis, B. Analysis of noisy signal restoration quality with exponential moving average filter. In Proceedings of the 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May 2016; pp. 1–4. [Google Scholar]
- Serheiev-Horchynskyi, O. Analysis of Frequency Characteristics of Simple Moving Average Digital Filtering System. In Proceedings of the 2019 IEEE International Scientific Practical Conference Problems of Info Communications Science and Technology (PIC S&T), Kyiv, Ukraine, 8–11 October 2019; pp. 97–100. [Google Scholar]
- Pratt, W.K. Digital Image Processing, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yang, P.; Xu, J.; Wang, S. Position fingerprint localization method based on linear interpolation in robot auditory system. In Proceedings of the Chinese Automation Congress, Jinan, China, 20–22 October 2017; pp. 2766–2771. [Google Scholar]
- Tahmoush, D. Review of Micro-Doppler Signatures. IET Radar Sonar Navig. 2015, 9, 1140–1146. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Chintalapudi, K.; Iyer, A.P.; Padmanabhan, V.N. Indoor localization without the pain. In Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking-MobiCom ’10, Chicago, IL, USA, 20–24 September 2010; pp. 173–184. [Google Scholar]
- Zhou, C.; Wieser, A. Application of backpropagation neural networks to both stages of fingerprinting based WIPS. In Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016; pp. 207–217. [Google Scholar]
- Tsatalas, S.; Vergos, D.; Spantideas, S.; Kapsalis, N.; Kakarakis, S.-D.; Livanos, N.; Hammal, S.; Alifragkis, E.; Bougas, A.; Capsalis, C.; et al. A novel multi-magnetometer facility for on-ground characterization of spacecraft equipment. Measurement 2019, 146, 948–960. [Google Scholar] [CrossRef]
- Polirpo, A.; Cucca, M. New facility for S/C magnetic cleanliness program. In Proceedings of the 2012 ESA Workshop on Aerospace EMC, Venice, Italy, 21–23 May 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
Dataset | Location | Samples/Signal | Signal Kinds | RP | Total Data | Date |
---|---|---|---|---|---|---|
1 | Testbed1 | 100 | 6 | 242 | 145,200 | 12 June 2022 |
2 | Testbed1 | 100 | 6 | 242 | 145,200 | 22 June 2022 |
3 | Testbed2 | 100 | 6 | 60 | 36,000 | 13 April 2023 |
4 | Testbed2 | 100 | 6 | 60 | 36,000 | 20 April 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Zhou, J.; Jang, K.; Kim, Y. Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network. Electronics 2023, 12, 5032. https://doi.org/10.3390/electronics12245032
Sun C, Zhou J, Jang K, Kim Y. Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network. Electronics. 2023; 12(24):5032. https://doi.org/10.3390/electronics12245032
Chicago/Turabian StyleSun, Chao, Junhao Zhou, Kyongseok Jang, and Youngok Kim. 2023. "Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network" Electronics 12, no. 24: 5032. https://doi.org/10.3390/electronics12245032
APA StyleSun, C., Zhou, J., Jang, K., & Kim, Y. (2023). Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network. Electronics, 12(24), 5032. https://doi.org/10.3390/electronics12245032