Dynamical Analysis and Synchronization of a New Memristive Chialvo Neuron Model
Abstract
:1. Introduction
2. Neuron Dynamics
3. Synchronizability of the 3D-MCM
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef] [PubMed]
- Khanday, F.A.; Dar, M.R.; Kant, N.A.; Rossello, J.L.; Psychalinos, C. 0.65 V integrable electronic realisation of integer-and fractional-order Hindmarsh–Rose neuron model using companding technique. IET Circuit. Devices Syst. 2018, 12, 696–706. [Google Scholar] [CrossRef]
- Khanday, F.A.; Kant, N.A.; Dar, M.R.; Zulkifli, T.Z.A.; Psychalinos, C. Low-voltage low-power integrable CMOS circuit implementation of integer-and fractional–order FitzHugh–Nagumo neuron model. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 2108–2122. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, J.; Rose, R. A model of the nerve impulse using two first-order differential equations. Nature 1982, 296, 162–164. [Google Scholar] [CrossRef]
- Morris, C.; Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35, 193–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rulkov, N.F. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 2002, 65, 041922. [Google Scholar] [CrossRef] [Green Version]
- Zandi-Mehran, N.; Panahi, S.; Hosseini, Z.; Golpayegani, S.M.R.H.; Jafari, S. One dimensional map-based neuron model: A phase space interpretation. Chaos Solitons Fractals 2020, 132, 109558. [Google Scholar] [CrossRef]
- Cazelles, B.; Courbage, M.; Rabinovich, M. Anti-phase regularization of coupled chaotic maps modelling bursting neurons. Europhys. Lett. 2001, 56, 504. [Google Scholar] [CrossRef]
- Chialvo, D.R. Generic excitable dynamics on a two-dimensional map. Chaos Solitons Fractals 1995, 5, 461–479. [Google Scholar] [CrossRef]
- Majhi, S.; Perc, M.; Ghosh, D. Dynamics on higher-order networks: A review. J. R. Soc. Interface 2022, 19, 20220043. [Google Scholar] [CrossRef] [PubMed]
- Parastesh, F.; Mehrabbeik, M.; Rajagopal, K.; Jafari, S.; Perc, M. Synchronization in Hindmarsh–Rose neurons subject to higher-order interactions. Chaos 2022, 32, 013125. [Google Scholar] [CrossRef]
- Naseri, N.; Parastesh, F.; Ghassemi, F.; Jafari, S.; Schöll, E.; Kurths, J. Converting high dimensional complex networks to lower dimensional ones preserving synchronization features. Europhys. Lett. 2022, 140, 21001. [Google Scholar] [CrossRef]
- Schöll, E. Partial synchronization patterns in brain networks. EPL (Europhys. Lett.) 2022, 126, 18001. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Phase synchronization in regular and chaotic systems. Int. J. Bifurc. Chaos 2000, 10, 2291–2305. [Google Scholar] [CrossRef]
- Sun, X.; Perc, M.; Kurths, J. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Chaos 2017, 27, 053113. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Chowdhury, A.R. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems. Phys. Lett. A 2010, 374, 3425–3436. [Google Scholar] [CrossRef]
- Kang, J.; Ramadoss, J.; Wang, Z.; Ali, A.M.A. Complete synchronization analysis of neocortical network model. Eur. Phys. J. Spec. Top. 2022, 231, 4037–4048. [Google Scholar] [CrossRef]
- Rakshit, S.; Majhi, S.; Ghosh, D. Synchronization in complex networks with long-range interactions. J. Phys. A Math. Theor. 2020, 53, 154002. [Google Scholar] [CrossRef]
- Bahmani, Z.; Daliri, M.R.; Merrikhi, Y.; Clark, K.; Noudoost, B. Working memory enhances cortical representations via spatially specific coordination of spike times. Neuron 2018, 97, 967–979.e966. [Google Scholar] [CrossRef]
- Merrikhi, Y.; Clark, K.; Albarran, E.; Parsa, M.; Zirnsak, M.; Moore, T.; Noudoost, B. Spatial working memory alters the efficacy of input to visual cortex. Nat. Commun. 2017, 8, 15041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrikhi, Y.; Shams-Ahmar, M.; Karimi-Rouzbahani, H.; Clark, K.; Ebrahimpour, R.; Noudoost, B. Dissociable contribution of extrastriate responses to representational enhancement of gaze targets. J. Cognit. Neurosci. 2021, 33, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Merrikhi, Y.; Clark, K.; Noudoost, B. Concurrent influence of top-down and bottom-up inputs on correlated activity of Macaque extrastriate neurons. Nat. Commun. 2018, 9, 5393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Zhu, L.; Cai, L.; Wang, J.; Liu, C.; Shi, N.; Liu, J. Variation of functional brain connectivity in epileptic seizures: An EEG analysis with cross-frequency phase synchronization. Cogn. Neurodyn. 2020, 14, 35–49. [Google Scholar] [CrossRef]
- Rubchinsky, L.L.; Park, C.; Worth, R.M. Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 2012, 68, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Koshiyama, D.; Miyakoshi, M.; Joshi, Y.B.; Molina, J.L.; Tanaka-Koshiyama, K.; Sprock, J.; Braff, D.L.; Swerdlow, N.R.; Light, G.A. A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology 2020, 45, 2198–2206. [Google Scholar] [CrossRef]
- Ikeda, K.; Bekkers, J.M. Autapses. Curr. Biol. 2006, 16, R308. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-T.; Chen, Y. Firing dynamics of an autaptic neuron. Chin. Phys. B 2015, 24, 128709. [Google Scholar] [CrossRef] [Green Version]
- Saada-Madar, R.; Miller, N.; Susswein, A.J. Autaptic muscarinic self-excitation and nitrergic self-inhibition in neurons initiating Aplysia feeding are revealed when the neurons are cultured in isolation. J. Mol. Histol. 2012, 43, 431–436. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ozer, M.; Baysal, V.; Perc, M. Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Q.; Li, T.; Yu, D.; Jia, Y. Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dyn. 2022, in press. [Google Scholar] [CrossRef]
- Faisal, A.A.; Selen, L.P.; Wolpert, D.M. Noise in the nervous system. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jia, Y.; Ma, J.; Alsaedi, A.; Ahmad, B. Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 2017, 104, 435–442. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Peng, Y.; He, S.; Sun, K. A higher dimensional chaotic map with discrete memristor. AEU Int. J. Electron. Commun. 2021, 129, 153539. [Google Scholar] [CrossRef]
- Rajagopal, K.; Kacar, S.; Wei, Z.; Duraisamy, P.; Kifle, T.; Karthikeyan, A. Dynamical investigation and chaotic associated behaviors of memristor Chua’s circuit with a non-ideal voltage-controlled memristor and its application to voice encryption. AEU Int. J. Electron. Commun. 2019, 107, 183–191. [Google Scholar] [CrossRef]
- Wu, H.; Ye, Y.; Bao, B.; Chen, M.; Xu, Q. Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Solitons Fractals 2019, 121, 178–185. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, J.; Chen, M.; Xu, Q.; Bao, B. DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator. Chaos Solitons Fractals 2022, 154, 111624. [Google Scholar] [CrossRef]
- Chen, M.; Wang, A.; Wang, C.; Wu, H.; Bao, B. DC-offset-induced hidden and asymmetric dynamics in Memristive Chua’s circuit. Chaos Solitons Fractals 2022, 160, 112192. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Dynamics of memristor circuits. Int. J. Bifurc. Chaos 2014, 24, 1430015. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Song, W.; Rao, M.; Belkin, D.; Li, Y.; Yan, P.; Jiang, H.; Lin, P.; Hu, M. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2019, 2, 115–124. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, L.; Sun, J.; Yao, W. Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 2019, 95, 2893–2906. [Google Scholar] [CrossRef]
- Sun, J.; Han, J.; Liu, P.; Wang, Y. Memristor-based neural network circuit of pavlov associative memory with dual mode switching. AEU Int. J. Electron. Commun. 2021, 129, 153552. [Google Scholar] [CrossRef]
- Lai, Q.; Lai, C.; Zhang, H.; Li, C. Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals 2022, 158, 112017. [Google Scholar] [CrossRef]
- Bao, B.; Hu, A.; Bao, H.; Xu, Q.; Chen, M.; Wu, H. Three-Dimensional Memristive Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors. Complexity 2018, 2018, 3872573. [Google Scholar] [CrossRef]
- Min, F.; Rui, Z. Boundary dynamics of a non-smooth memristive Hindmarsh–Rose neuron system. Chaos 2022, 32, 103117. [Google Scholar] [CrossRef]
- Fan, W.; Wu, H.; Li, Z.; Xu, Q. Synchronization and chimera in a multiplex network of Hindmarsh–Rose neuron map with flux-controlled memristor. Eur. Phys. J. Spec. Top. 2022, 231, 4131–4141. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn. 2019, 97, 1721–1733. [Google Scholar] [CrossRef]
- Li, K.; Bao, H.; Li, H.; Ma, J.; Hua, Z.; Bao, B. Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inf. 2021, 18, 1726–1736. [Google Scholar] [CrossRef]
- Mehrabbeik, M.; Parastesh, F.; Ramadoss, J.; Rajagopal, K.; Namazi, H.; Jafari, S. Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 2021, 18, 9394–9409. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, H.; Krejcar, O.; Namazi, H. Synchronization in a network of map-based neurons with memristive synapse. Eur. Phys. J. Spec. Top. 2022, 231, 4057–4064. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Mehrabbeik, M.; Parastesh, F.; Rajagopal, K.; Jafari, S. A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. Electronics 2022, 11, 153. [Google Scholar] [CrossRef]
- Fan, W.; Chen, X.; Wu, H.; Li, Z.; Xu, Q. Firing patterns and synchronization of Morris-Lecar neuron model with memristive autapse. AEU Int. J. Electron. Commun. 2023, 158, 154454. [Google Scholar] [CrossRef]
- Liu, L.J.; Qin, Y.H. Dynamics of discrete memristor-based Rulkov neuron. IEEE Access 2022, 10, 72051–72056. [Google Scholar] [CrossRef]
- Li, R.; Ding, R. A simple time-delay memristor and its application in 2D HR neuron model. Int. J. Mod. Phys. B 2021, 35, 2150166. [Google Scholar] [CrossRef]
- Kafraj, M.S.; Parastesh, F.; Jafari, S. Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals 2020, 137, 109782. [Google Scholar] [CrossRef]
Memristive Model | Memductance Function | Discrete | Summary | Year |
---|---|---|---|---|
Morris–Lecar with memristive autapse [54] | Polynomial | No | The dynamics of the proposed Morris–Lecar neuron model with memristive autapse are investigated theoretically with the help of time series, phase space, and the bifurcation diagram. It demonstrates that memristive autapse can cause multistability. Also, this memristor can enhance the synchronizability of the coupled memristive autaptic neurons. | 2023 |
Memristive Rulkov neuron [55] | Sinusoid | Yes | The HP memristor adds the Rulkov neuron to analyze the memristor-based neuron. Phase portraits, bifurcation structures, and spectral entropy complexity are then used to study its dynamics. It shows that the resistance of the memristor can postpone the bifurcation point. Additionally, the memristive model has a wider range of complexity. | 2022 |
Memristive Hindmarsh–Rose [56] | Time-delayed | No | The effect of a time-delay memristor is examined by using the 2D Hindmarsh–Rose model. When the external source is a DC source, it has been demonstrated that the memristor may produce chaotic or hyperchaotic currents by adjusting the time-delay parameter. The bifurcation diagram, Lyapunov exponents, and phase portraits are used to study the dynamical behaviors of the suggested memristor model. | 2021 |
Memristive improved Izhikevich [57] | Polynomial | No | The memristive version of the improved Izhikevich model is analyzed to see how the external magnetic field affects the neuron’s firing pattern. Model dynamics are only examined using time series and bifurcation diagrams. | 2020 |
3D Memristive Chialvo Model | Hyperbolic tangent | Yes | In this paper, the 3D memristive Chialvo model is proposed to study the impact of hyperbolic tangent fluctuation on neuron dynamics. The stability of the system’s fixed point is first analyzed. The variation of the model based on system parameters, particularly the magnetic strength, is then examined using single and double-parameter bifurcation diagrams and corresponding Lyapunov exponents, in addition to time series analysis. | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivekanandhan, G.; Natiq, H.; Merrikhi, Y.; Rajagopal, K.; Jafari, S. Dynamical Analysis and Synchronization of a New Memristive Chialvo Neuron Model. Electronics 2023, 12, 545. https://doi.org/10.3390/electronics12030545
Vivekanandhan G, Natiq H, Merrikhi Y, Rajagopal K, Jafari S. Dynamical Analysis and Synchronization of a New Memristive Chialvo Neuron Model. Electronics. 2023; 12(3):545. https://doi.org/10.3390/electronics12030545
Chicago/Turabian StyleVivekanandhan, Gayathri, Hayder Natiq, Yaser Merrikhi, Karthikeyan Rajagopal, and Sajad Jafari. 2023. "Dynamical Analysis and Synchronization of a New Memristive Chialvo Neuron Model" Electronics 12, no. 3: 545. https://doi.org/10.3390/electronics12030545
APA StyleVivekanandhan, G., Natiq, H., Merrikhi, Y., Rajagopal, K., & Jafari, S. (2023). Dynamical Analysis and Synchronization of a New Memristive Chialvo Neuron Model. Electronics, 12(3), 545. https://doi.org/10.3390/electronics12030545