Using the Uniform Theory of Diffraction to Analyze Radio Wave Propagation along Urban Street Canyons for Device-to-Device Communication
Abstract
:1. Introduction
2. Considered Scenarios and Theoretical Analysis
2.1. LOS Case
2.1.1. Direct Ray
2.1.2. Single Diffractions
2.1.3. Double Diffractions
2.1.4. Triple Diffractions
2.1.5. Quadruple Diffractions
2.1.6. Reflected Rays
2.1.7. Total Signal
2.2. First NLOS Case
2.2.1. Quadruple Diffraction
2.2.2. Total Signal
2.3. Second NLOS Case
2.3.1. Double Diffraction
2.3.2. Triple Diffractions
2.3.3. Quadruple Diffractions
2.3.4. Total Signal
3. Results
3.1. LOS Case
3.2. First NLOS Case
3.3. Second NLOS Case
3.4. Analysis of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.S.; Bertoni, H.L.; Chrysanthou, C.; Boksiner, J. Simplified path gain model for mobile-to-mobile communications in an urban high-rise environment. In Proceedings of the IEEE Sarnoff Symposium, Princeton, NJ, USA, 12–14 April 2010. [Google Scholar]
- Sasaki, M.; Yamada, W.; Kita, N.; Sugiyama, T. Path Loss Model with Low Antenna Height for Microwave Bands in Residential Areas. IEICE Trans. 2013, 96-B, 1930–1944. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chung, H.K.; Kim, M.D. Building Height Effects on Path Loss for Low Antenna Links in Urban Street Grid Environments. In Proceedings of the IEEE Asia Pacific Wireless Communication Symposium, Seoul, Korea, 22–23 August 2013. [Google Scholar]
- Erceg, V.; Schilling, D.L.; Ghassemzadeh, S.; Li, D.; Taylor, M. Propagation modeling and measurements in an urban and suburban environment using broadband direct sequence spread spectrum. In Proceedings of the IEEE Vehicular Technology Society 42nd VTS Conference, 10–13 May 1992; Volume 1, pp. 10–13. [Google Scholar]
- Erceg, V.; Rustako, A.J., Jr.; Roman, R.S. Diffraction around corners and its effects on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz. IEEE Trans. Veh. Technol. 1994, 43, 762–766. [Google Scholar] [CrossRef]
- Masui, H.; Ishii, M.; Sakawa, K.; Shimizu, H.; Kobayashi, T.; Akaike, M. Microwave path-loss characteristics in urban LOS and NLOS environments. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No. 01CH37202), Rhodes, Greece, 6–9 May 2001; Volume 1, pp. 395–398. [Google Scholar]
- Ge, Z.-Y.; Lu, G.; Xiao, H.-B.; Zeng, D.; Gheit, A. Horizontal Diffraction in Multiple Obstacles Using Parabolic Equation with Recursive Convolution Nonlocal Boundary Conditions. Prog. Electromagn. Res. M 2017, 56, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Xiao, H.; Lu, G.; Zeng, D. Horizontal diffraction based on parabolic equation with nonlocal boundary conditions. In Proceedings of the 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), Beijing, China, 28–31 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Greivenkamp, J.E. Field Guide to Geometrical Optics; SPIE: New York, NY, USA, 2004. [Google Scholar]
- Kouyoumjian, R.G.; Pathak, P.H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 1974, 62, 1448–1461. [Google Scholar] [CrossRef] [Green Version]
- Luebbers, R.J. A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Trans. Antennas Propag. 1989, 37, 206–211. [Google Scholar] [CrossRef]
Mean Error UTD (dB) | Mean Error PEM (dB) | Variance UTD (dB) | Variance PEM (dB) | |||
---|---|---|---|---|---|---|
LOS case | 1 obstacle | h = 0.032 m | 0.75 | 0.72 | 0.18 | 0.25 |
h = 0.05 m | 0.83 | 1.29 | 0.18 | 0.26 | ||
2 obstacles | h = 0.032 m | 0.81 | 0.64 | 0.33 | 0.31 | |
h = 0.05 m | 0.92 | 1.32 | 0.30 | 0.30 | ||
First NLOS case | 1 obstacle | 0.65 | 1.00 | 0.28 | 0.35 | |
2 obstacles | 1.45 | 0.83 | 1.73 | 0.44 | ||
Second NLOS case | 1.09 | 2.07 | 0.47 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugarolas-Ortiz, E.; Rodríguez-Rodríguez, I.; Rodríguez, J.-V.; Juan-Llácer, L.; Pardo-Quiles, D. Using the Uniform Theory of Diffraction to Analyze Radio Wave Propagation along Urban Street Canyons for Device-to-Device Communication. Electronics 2023, 12, 593. https://doi.org/10.3390/electronics12030593
Brugarolas-Ortiz E, Rodríguez-Rodríguez I, Rodríguez J-V, Juan-Llácer L, Pardo-Quiles D. Using the Uniform Theory of Diffraction to Analyze Radio Wave Propagation along Urban Street Canyons for Device-to-Device Communication. Electronics. 2023; 12(3):593. https://doi.org/10.3390/electronics12030593
Chicago/Turabian StyleBrugarolas-Ortiz, Elena, Ignacio Rodríguez-Rodríguez, José-Víctor Rodríguez, Leandro Juan-Llácer, and Domingo Pardo-Quiles. 2023. "Using the Uniform Theory of Diffraction to Analyze Radio Wave Propagation along Urban Street Canyons for Device-to-Device Communication" Electronics 12, no. 3: 593. https://doi.org/10.3390/electronics12030593
APA StyleBrugarolas-Ortiz, E., Rodríguez-Rodríguez, I., Rodríguez, J. -V., Juan-Llácer, L., & Pardo-Quiles, D. (2023). Using the Uniform Theory of Diffraction to Analyze Radio Wave Propagation along Urban Street Canyons for Device-to-Device Communication. Electronics, 12(3), 593. https://doi.org/10.3390/electronics12030593