UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence
Abstract
:1. Introduction
2. Propagation Environment
3. Theoretical Formulations
3.1. Buildings Modeled as Knife-Edges
3.2. Buildings Modeled as Rectangular Sections
4. Measurement Setup
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walfisch, J.; Bertoni, H. A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. 1988, 36, 1788–1796. [Google Scholar] [CrossRef]
- Xia, H.; Bertoni, H. Diffraction of cylindrical and plane waves by an array of absorbing half-screens. IEEE Trans. Antennas Propag. 1992, 40, 170–177. [Google Scholar] [CrossRef]
- Saunders, S.R.; Bonar, F.R. Explicit Multiple Building Diffraction Attenuation Function for Mobile Radio Wave Propagation. Electron. Lett. 1991, 27, 1276–1277. [Google Scholar] [CrossRef]
- Holm, P. UTD-diffraction coefficients for higher order wedge diffracted fields. IEEE Trans. Antennas Propag. 1996, 44, 879–888. [Google Scholar] [CrossRef]
- Neve, M.J.; Rowe, G.B. Contributions towards the Development of a UTD-Based model for Cellular Radio Propagation Prediction. IEE Proc. Microw. Ant. Prop. 1994, 141, 407–414. [Google Scholar] [CrossRef]
- Volkova, A.; Malevich, E.; Mikhailov, M. Numerical Simulation of Radio Wave Propagation in a Forest Environment Using the Constructor of Individual Trees. In Proceedings of the 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russia, 24–28 June 2019; pp. 360–363. [Google Scholar] [CrossRef]
- Picallo, I.; Klaina, H.; Lopez-Iturri, P.; Aguirre, E.; Celaya-Echarri, M.; Azpilicueta, L.; Eguizábal, A.; Falcone, F.; Alejos, A. A Radio Channel Model for D2D Communications Blocked by Single Trees in Forest Environments. Sensors 2019, 19, 4606. [Google Scholar] [CrossRef]
- Adegoke, A.S.; Okpeki, U.K.; Green, O. Radio Wave Propagation in a Forested Channel. J. Eng. Res. Rep. 2022, 22, 34–40. [Google Scholar] [CrossRef]
- Segun, A.A.; Kofoworola, A.H.; Chizea, F.D.; Gbenro, A.; Benjamin AS, A. Scattering Effects of Residential Trees on Very High Frequency Radio Wave Propagation. Adv. Phys. Theor. Appl. 2020, 83, 76–86. [Google Scholar]
- Adegoke, A.S.; Okpeki, U.K.; Green, O. Path Loss Prediction Model for Propagating Radio Wave in Woodland. J. Eng. Res. Rep. 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Torrico, S.; Bertoni, H.; Lang, R. Modeling tree effects on path loss in a residential environment. IEEE Trans. Antennas Propag. 1998, 46, 872–880. [Google Scholar] [CrossRef]
- Chee, K.L.; Torrico, S.A.; Kurner, T. Radiowave Propagation Prediction in Vegetated Residential Environments. IEEE Trans. Veh. Technol. 2012, 62, 486–499. [Google Scholar] [CrossRef]
- Ghorbani, A.; Tajvidy, A.; Torabi, E.; Arablouei, R. A New Uniform Theory of Diffraction Based Model for Multiple Building Diffraction in the Presence of Trees. Electromagnetics 2011, 31, 127–146. [Google Scholar] [CrossRef]
- Zhang, W. Formulation of multiple diffraction by trees and buildings for radio propagation predictions for local multipoint distribution service. J. Res. Natl. Inst. Stand. Technol. 1999, 104, 579–584. [Google Scholar] [CrossRef]
- Erricolo, D.; D’Elia, G.; Uslenghi, P. Measurements on scaled models of urban environments and comparisons with ray-tracing propagation simulation. IEEE Trans. Antennas Propag. 2002, 50, 727–735. [Google Scholar] [CrossRef]
- Rodríguez, J.-V.; Molina-García-Pardo, J.-M.; Juan-Llácer, L. A new solution expressed in terms of UTD coefficients for the multiple diffraction of spherical waves by a series of buildings. Radio Sci. 2007, 42, 1–15. [Google Scholar] [CrossRef]
- Kouyoumjian, R.; Pathak, P. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 1974, 62, 1448–1461. [Google Scholar] [CrossRef]
- COST235: Radio Propagation Effects on Next-Generation Fixed-Service Terrestrial Telecommunication Systems; Final Report; CCLRC Rutherford Appleton Laboratory (RAL): Luxembourg, 1996.
- Matzler, C. Microwave (1-100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens. 1994, 32, 947–949. [Google Scholar] [CrossRef]
- Luebbers, R. Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss. IEEE Trans. Antennas Propag. 1984, 32, 70–76. [Google Scholar] [CrossRef]
- Martinez-Ingles, M.-T.; Rodriguez, J.-V.; Molina-Garcia-Pardo, J.-M.; Pascual-Garcia, J.; Juan-Llacer, L. Comparison of a UTD-PO Formulation for Multiple-Plateau Diffraction With Measurements at 62 GHz. IEEE Trans. Antennas Propag. 2012, 61, 1000–1003. [Google Scholar] [CrossRef]
- Martinez-Ingles, M.-T.; Rodriguez, J.-V.; Molina-Garcia-Pardo, J.-M.; Pascual-Garcia, J.; Juan-Llacer, L. Experimental and Theoretical Comparison of Cylindrical Against Rectangular Obstacles in mm-Wave Multiple Diffraction. IEEE Trans. Antennas Propag. 2013, 61, 5347–5350. [Google Scholar] [CrossRef]
- Martinez-Ingles, M.-T.; Rodriguez, J.-V.; Pascual-Garcia, J.; Molina-Garcia-Pardo, J.-M.; Juan-Llacer, L. On the Influence of Diffuse Scattering on Multiple-Plateau Diffraction Analysis at mm-Wave Frequencies. IEEE Trans. Antennas Propag. 2019, 67, 2130–2135. [Google Scholar] [CrossRef]
- Ultra-Wideband Omni-Directional Antenna 0.8 to 40 GHz. Available online: https://www.steatite-antennas.co.uk/wp-content/uploads/2017/09/QOM-SL-0.8-40-K-SG-L.pdf (accessed on 9 February 2023).
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- R&S®ZVA vector network analyzer. Available online: https://www.rohde-schwarz.com/es/producto/zva-pagina-de-inicio-producto_63493-9660.html (accessed on 9 February 2023).
- Alejos, A.V.; Sanchez, M.G.; Cuinas, I. Measurement and Analysis of Propagation Mechanisms at 40 GHz: Viability of Site Shielding Forced by Obstacles. IEEE Trans. Veh. Technol. 2008, 57, 3369–3380. [Google Scholar] [CrossRef]
- Tajvidy, A.; Ghorbani, A. A New Uniform Theory-of-Diffraction-Based Model for the Multiple Building Diffraction of Spherical Waves in Microcell Environments. Electromagnetics 2008, 28, 375–387. [Google Scholar] [CrossRef]
- Muqaibel, A.; Safaai-Jazi, A.; Bayram, A.; Attiya, A.; Riad, S. Ultrawideband through-the-wall propagation. IEE Proc.–Microw. Antennas Propag. 2005, 152, 581–588. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, J.-V.; Martínez-Inglés, M.-T.; Garcia-Pardo, J.-M.M.; Juan-Llácer, L.; Rodríguez-Rodríguez, I. UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence. Electronics 2023, 12, 899. https://doi.org/10.3390/electronics12040899
Rodríguez J-V, Martínez-Inglés M-T, Garcia-Pardo J-MM, Juan-Llácer L, Rodríguez-Rodríguez I. UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence. Electronics. 2023; 12(4):899. https://doi.org/10.3390/electronics12040899
Chicago/Turabian StyleRodríguez, José-Víctor, María-Teresa Martínez-Inglés, Jose-Maria Molina Garcia-Pardo, Leandro Juan-Llácer, and Ignacio Rodríguez-Rodríguez. 2023. "UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence" Electronics 12, no. 4: 899. https://doi.org/10.3390/electronics12040899
APA StyleRodríguez, J. -V., Martínez-Inglés, M. -T., Garcia-Pardo, J. -M. M., Juan-Llácer, L., & Rodríguez-Rodríguez, I. (2023). UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence. Electronics, 12(4), 899. https://doi.org/10.3390/electronics12040899