Charge Transport Mechanism in the Forming-Free Memristor Based on PECVD Silicon Oxynitride
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Contact-Limited Charge Transport Mechanism in the PECVD SiO0.9N0.6-Based Memristor
3.2. Bulk-Limited Charge Transport Mechanism in the PECVD SiO0.9N0.6-Based Memristor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
State | Schottky Effect | TAT | Frenkel Effect | H-A Model |
---|---|---|---|---|
LRS | Constant: S = 0.005 cm2 * d = 33 nm Fitted: W0 = 0.07 eV ε∞ = 18 m* = 2.3 × 10−5 me | Constant: d = 33 nm Fitted: W0 = 0.04 eV S = 4 × 10−16 m2 m* = 6.9 me | Constant: S = 0.005 cm2 * d = 33 nm Fitted: W = 0.13 eV ν = 3.1 × 1013 s−1 ε∞ = 65 N = 8.0 × 106 cm−3 | Constant: S = 0.005 cm2 * d = 33 nm Fitted: N = 3.5 × 1020 cm−3 W = 0.22 eV ε∞ = 60 ν = 8.0 × 103 s−1 |
HRS | Constant: S = 0.005 cm2 d = 33 nm Fitted: W0 = 0.15 eV ε∞ = 9 m* = 1.0 × 10−12 me | Constant: S = 0.005 cm2 d = 33 nm Fitted: W0 = 0.15 eV S = 1.0 × 10−14 m2 m* = 1.4 me | Constant: S = 0.005 cm2 d = 33 nm Fitted: W = 0.24 eV ν = 5.8 × 1013 sec−1 ε∞ = 28 N = 1.0 × 102 cm−3 | Constant: S = 0.005 cm2 d = 33 nm Fitted: N = 3.5 × 1020 cm−3 W = 0.35 eV ε∞ = 20 |
ν = 1.2 × 101 s−1 |
State | ME-L Model | N-G Model | S-E Model | SCLC |
---|---|---|---|---|
LRS | Constant: S = 0.005 cm2 * d = 33 nm Fitted: N = 1.2 × 109 cm−3 Wt = 0.1 eV Wopt = 0.2 eV Wph = 60 meV m* = 6 me | Constant: S = 0.005 cm2 * d = 33 nm Fitted: N = 3.5 × 1020 cm−3 Wt = 0.18 eV Wopt = 0.36 eV m* = 53 me | Constant: S = 0.005 cm2 * d = 33 nm Fitted: I0 = 2 × 103 A W = 0.11 eV V0 = 0.5 eV a = 0.6 nm | Constant: ε = 6 d = 33 nm m* = 0.5 me μ = 1 cm2/(V×s) Fitted: Ea = 0.11 eV Nd = 5.5 × 1019 cm−3 Wt = 0.01 eV Nt = 4.6 × 1017 cm−3 r = 410 nm |
HRS | Constant: S = 0.005 cm2 d = 33 nm Fitted: N = 1.0 × 103 cm−3 Wt = 0.15 eV Wopt = 0.3 eV Wph = 60 meV m* = 1.1 me | Constant: S = 0.005 cm2 d = 33 nm Fitted: N = 3.5 × 1020 cm−3 Wt = 0.35 eV Wopt = 0.7 eV m* = 47 me | Constant: S = 0.005 cm2 d = 33 nm Fitted: I0 = 0.15 A W = 0.24 eV V0 = 0.5 eV a = 1.4 nm | Constant: S = 0.005 cm2 d = 33 nm ε = 6 m* = 0.5 me Fitted: Ea = 0.19 eV Nd = 4.6 × 1017 cm−3 Wt = 0.35 eV Nt = 1.7 × 1019 cm−3 l = 1.3 |
μ = 9.6 × 10−11 cm2/(V×s) |
References
- Shi, Y.; He, L.; Guang, F.; Li, L.; Xin, Z.; Liu, R. A Review: Preparation, Performance, and Applications of Silicon Oxynitride Film. Micromachines 2019, 10, 552. [Google Scholar] [CrossRef] [Green Version]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Lee, C.; Lee, D.; Chang, M.; Hur, J.H.; Kim, Y.-B.; Kim, C.-J.; Seo, D.H.; Seo, S.; Chung, U.-I.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nature Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef]
- Prakash, A.; Jana, D.; Maikap, S. TaOx-based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 2013, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Meziani, S.; Moussi, A.; Mahiou, L.; Outemzabet, R. Compositional analysis of silicon oxide/silicon nitride thin films. Mater. Sci. 2016, 34, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Iwase, Y.; Horie, Y.; Daiko, Y.; Honda, S.; Iwamoto, Y. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability. Materials 2017, 10, 1391. [Google Scholar] [CrossRef] [Green Version]
- Mehonic, A.; Shluger, A.L.; Gao, D.; Valov, I.; Miranda, E.; Ielmini, D.; Bricalli, A.; Ambrosi, E.; Li, C.; Yang, J.J.; et al. Silicon oxide (SiOx): A promising material for resistance switching? Adv. Mater. 2018, 30, 1801187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Zhong, L.; Natelson, D.; Tour, J.M. Silicon oxide: A non-innocent surface for molecular electronics and nanoelectronics studies. J. Am. Chem. Soc. 2011, 133, 941. [Google Scholar] [CrossRef] [Green Version]
- Gismatulin, A.A.; Voronkovskii, V.A.; Kamaev, G.N.; Novikov, Y.N.; Kruchinin, V.N.; Krivyakin, G.K.; Gritsenko, V.A.; Prosvirin, I.P.; Chin, A. Electronic structure and charge transport mechanism in a forming-free SiOx-based memristor. Nanotechnology 2020, 31, 505704. [Google Scholar] [CrossRef]
- Gismatulin, A.A.; Kamaev, G.N.; Kruchinin, V.N.; Gritsenko, V.A.; Orlov, O.M.; Chin, A. Charge transport mechanism in the forming-free memristor based on silicon nitride. Sci. Rep. 2021, 11, 2417. [Google Scholar]
- Winn, E.B. The Temperature Dependence of the Self-Diffusion Coefficients of Argon, Neon, Nitrogen, Oxygen, Carbon Dioxide, and Methane. Phys. Rev. 1950, 80, 1024–1027. [Google Scholar] [CrossRef]
- Kijima, K.; Shirasaki, S. Nitrogen self-diffusion in silicon nitride. J. Chem. Phys. 1976, 65, 2668–2671. [Google Scholar] [CrossRef]
- Roussel, M.; Talbot, E.; Pareige, P.; Gourbilleau, F. Influence of the supersaturation on Si diffusion and growth of Si nanoparticles in silicon-rich silica. J. Appl. Phys. 2013, 113, 063519. [Google Scholar] [CrossRef] [Green Version]
- Volodin, V.A.; Geydt, P.; Kamaev, G.N.; Gismatulin, A.A.; Krivyakin, G.K.; Prosvirin, I.P.; Azarov, I.A.; Fan, Z.; Vergnat, M. Resistive Switching in Non-Stoichiometric Germanosilicate Glass Films Containing Ge Nanoclusters. Electronics 2020, 9, 2103. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.; He, L. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film. J. Semicond. 2017, 38, 043002. [Google Scholar] [CrossRef]
- Vasileiadis, N.; Karakolis, P.; Mandylas, P.; Ioannou-Sougleridis, V.; Normand, P.; Perego, M.; Komninou, P.; Ntinas, V.; Fyrigos, I.-A.; Karafyllidis, I.; et al. Understanding the role of defects in silicon nitride-based resistive switching memories through oxygen doping. IEEE Trans. Nanotechnol. 2021, 20, 365. [Google Scholar] [CrossRef]
- Leng, K.; Zhu, X.; Ma, Z.; Yu, X.; Xu, J.; Xu, L.; Li, W.; Chen, K. Artificial neurons and synapses based on Al/a-SiNxOy:H/P+-Si device with tunable resistive switching from threshold to memory. Nanomaterials 2022, 12, 311. [Google Scholar] [CrossRef]
- Yu, Z.; Aceves, M.; Carrillo, J.; Lopez-Estopier, R. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride. Thin Solid Films 2006, 515, 2366–2372. [Google Scholar] [CrossRef]
- Yonamoto, Y.; Inaba, Y.; Akamatsu, N. Compositional dependence of trap density and origin in thin silicon oxynitride film investigated using spin dependent Poole–Frenkel current. Appl. Phys. Lett. 2011, 98, 232905. [Google Scholar] [CrossRef]
- Novikov, Y.N.; Gismatulin, A.A.; Prosvirin, I.P.; Bobovnikov, P.G.; Krasnikov, G.Y.; Gritsenko, V.A. Short-range order and charge transport in silicon-rich pyrolytic silicon oxynitride. J. Non Cryst. Solids 2023, 599, 121984. [Google Scholar] [CrossRef]
- Perevalov, T.V.; Volodin, V.A.; Kamaev, G.N.; Gismatulin, A.A.; Cherkova, S.G.; Prosvirin, I.P.; Astankova, K.N.; Gritsenko, V.A. Electronic structure of silicon oxynitride films grown by plasma-enhanced chemical vapor deposition for memristor application. J. Non Cryst. Solids 2022, 598, 121925. [Google Scholar] [CrossRef]
- Antonenko, A.K.; Volodin, V.A.; Efremov, M.D.; Zazulya, P.S.; Kamaev, G.N.; Marin, D.V. Silicon nitride films deposited at substrate temperatures <100 ◦C in a permanent magnet electron cyclotron resonance plasma. Optoelectron. Instrum. Data Process. 2011, 47, 459. [Google Scholar]
- Jensen, K.L. General formulation of thermal, field and photoinduced electron emission. J. Appl. Phys. 2007, 102, 024911. [Google Scholar] [CrossRef]
- Roberts, G.G.; Polango, J.I. Thermally assisted tunneling in dielectric films. Phys. Stat. Sol. a 1970, 1, 409–420. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Meerson, E.E.; Morokov, Y.N. Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures. Phys. Rev. B 1998, 57, R2081–R2083. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, J. On the theory of electric breakdown of dielectrics and electronic semiconductors. Tech. Phys. USSR 1938, 5, 685–695. [Google Scholar]
- Frenkel, J. On pre-breakdown phenomena in insulators and electronic semiconductors. Phys. Rev. B 1938, 54, 647. [Google Scholar] [CrossRef]
- Hill, R.M. Poole-Frenkel conduction in amorphous solids. Philos. Mag. 1971, 23, 59–86. [Google Scholar] [CrossRef]
- Adachi, H.; Shibata, Y.; Ono, S. On electronic conduction through evaporated silicon oxide films. J. Phys. D Appl. Phys. 1971, 4, 988–994. [Google Scholar] [CrossRef]
- Makram-Ebeid, S.S.; Lannoo, M. Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor. Phys. Rev. B 1982, 25, 6406. [Google Scholar] [CrossRef]
- Nasyrov, K.A.; Gritsenko, V.A. Charge transport in dielectrics via tunneling between traps. J. Appl. Phys. 2011, 109, 093705. [Google Scholar] [CrossRef]
- Shklovskii, B.I. Percolation Mechanism of Electrical-Conduction in Strong Electric-Fields. Sov. Phys. Semicond. 1979, 13, 53–56. [Google Scholar]
- Shklovskii, B.I. & Efros, A.L. Percolation Theory and Conductivity of Highly Inhomogeneous-Media. Usp. Fiz. Nauk. 1975, 117, 401–435. [Google Scholar]
- Mott, N.F.; Gurney, R.W. Electronic Processes in Ionic Crystals. J. Phys. Chem. 1941, 45, 1142. [Google Scholar]
- Lampert, M.A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev. 1956, 103, 1648. [Google Scholar] [CrossRef]
- Murgatroyd, P.N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 1970, 3, 151–156. [Google Scholar] [CrossRef]
- Lampert, M.A.; Mark, P. Current Injection in Solids; Academic Press: New York, USA, 1970; p. 351. [Google Scholar]
- Bloomfield, P.; Steiger, W. Least Absolute Deviations, Theory, Applications and Algorithms; Huber, P., Rosenblatt, M., Eds.; Birkhäuser: Boston, MA, USA, 1983; p. 349. [Google Scholar]
- Fowler, R.H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 1928, 119, 173–181. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gismatulin, A.A.; Kamaev, G.N.; Volodin, V.A.; Gritsenko, V.A. Charge Transport Mechanism in the Forming-Free Memristor Based on PECVD Silicon Oxynitride. Electronics 2023, 12, 598. https://doi.org/10.3390/electronics12030598
Gismatulin AA, Kamaev GN, Volodin VA, Gritsenko VA. Charge Transport Mechanism in the Forming-Free Memristor Based on PECVD Silicon Oxynitride. Electronics. 2023; 12(3):598. https://doi.org/10.3390/electronics12030598
Chicago/Turabian StyleGismatulin, Andrei A., Gennadiy N. Kamaev, Vladimir A. Volodin, and Vladimir A. Gritsenko. 2023. "Charge Transport Mechanism in the Forming-Free Memristor Based on PECVD Silicon Oxynitride" Electronics 12, no. 3: 598. https://doi.org/10.3390/electronics12030598
APA StyleGismatulin, A. A., Kamaev, G. N., Volodin, V. A., & Gritsenko, V. A. (2023). Charge Transport Mechanism in the Forming-Free Memristor Based on PECVD Silicon Oxynitride. Electronics, 12(3), 598. https://doi.org/10.3390/electronics12030598