Big Data Analytics Using Artificial Intelligence
1. Introduction
2. The Present Issue
3. Future Directions
- Real-time analytics: the increasing demand for real-time insights and decision making will drive the development of AI-powered big data analytics platforms that can process large volumes of data in near real time.
- Edge analytics: with the proliferation of IoT devices, there will be a growing need for edge analytics, where data are analyzed and processed at the source, reducing the need for data to be transferred to centralized data centers.
- Explainable AI: as AI-powered analytics become more widespread, there will be a growing need for explainable AI, where the reasoning behind AI-generated insights and predictions is made transparent and understandable.
- Integration with other technologies: the integration of AI-powered big data analytics with other technologies, such as cloud computing, blockchain, and quantum computing, will enable organizations to take full advantage of the potential of big data.
- Personalized analytics: the development of AI algorithms that can tailor insights and predictions to specific individuals and organizations will drive the growth of personalized analytics, making big data analytics even more accessible and relevant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandomi, A.H.; Chen, F.; Abualigah, L. Machine Learning Technologies for Big Data Analytics. Electronics 2022, 11, 421. [Google Scholar] [CrossRef]
- Swain, D.; Mehta, U.; Bhatt, A.; Patel, H.; Patel, K.; Mehta, D.; Acharya, B.; Gerogiannis, V.C.; Kanavos, A.; Manika, S. A Robust Chronic Kidney Disease Classifier Using Machine Learning. Electronics 2023, 12, 212. [Google Scholar] [CrossRef]
- Nusir, M.; Louati, A.; Louati, H.; Tariq, U.; Abu Zitar, R.; Abualigah, L.; Gandomi, A.H. Design Research Insights on Text Mining Analysis: Establishing the Most Used and Trends in Keywords of Design Research Journals. Electronics 2022, 11, 3930. [Google Scholar] [CrossRef]
- AlZu’bi, S.; Abu Zitar, R.; Hawashin, B.; Abu Shanab, S.; Zraiqat, A.; Mughaid, A.; Almotairi, K.H.; Abualigah, L. A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education. Electronics 2022, 11, 2964. [Google Scholar] [CrossRef]
- Ai, M.A.S.; Shanmugam, A.; Muthusamy, S.; Viswanathan, C.; Panchal, H.; Krishnamoorthy, M.; Elminaam, D.S.A.; Orban, R. Real-Time Facemask Detection for Preventing COVID-19 Spread Using Transfer Learning Based Deep Neural Network. Electronics 2022, 11, 2250. [Google Scholar] [CrossRef]
- Daradkeh, M.; Abualigah, L.; Atalla, S.; Mansoor, W. Scientometric Analysis and Classification of Research Using Convolutional Neural Networks: A Case Study in Data Science and Analytics. Electronics 2022, 11, 2066. [Google Scholar] [CrossRef]
- Fathimathul Rajeena, P.P.; Orban, R.; Vadivel, K.S.; Subramanian, M.; Muthusamy, S.; Elminaam, D.S.A.; Nabil, A.; Abualigah, L.; Ahmadi, M.; Ali, M.A. A novel method for the classification of butterfly species using pre-trained CNN models. Electronics 2022, 11, 2016. [Google Scholar] [CrossRef]
- Ali, M.A.S.; Balasubramanian, K.; Krishnamoorthy, G.D.; Muthusamy, S.; Pandiyan, S.; Panchal, H.; Mann, S.; Thangaraj, K.; El-Attar, N.E.; Abualigah, L.; et al. Classification of Glaucoma Based on Elephant-Herding Optimization Algorithm and Deep Belief Network. Electronics 2022, 11, 1763. [Google Scholar] [CrossRef]
- Alfaiz, N.S.; Fati, S.M. Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics 2022, 11, 662. [Google Scholar] [CrossRef]
- Daradkeh, M.K. A Hybrid Data Analytics Framework with Sentiment Convergence and Multi-Feature Fusion for Stock Trend Prediction. Electronics 2022, 11, 250. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Mohammadi, S.; Zamani, H.; Gandomi, M.; Gandomi, A.H. A Hybrid Imputation Method for Multi-Pattern Missing Data: A Case Study on Type II Diabetes Diagnosis. Electronics 2021, 10, 3167. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Abualigah, L.; Elaziz, M.A.; Oliva, D. EWOA-OPF: Effective Whale Optimization Algorithm to Solve Optimal Power Flow Problem. Electronics 2021, 10, 2975. [Google Scholar] [CrossRef]
- Hussien, A.G.; Abualigah, L.; Abu Zitar, R.; Hashim, F.A.; Amin, M.; Saber, A.; Almotairi, K.H.; Gandomi, A.H. Recent Advances in Harris Hawks Optimization: A Comparative Study and Applications. Electronics 2022, 11, 1919. [Google Scholar] [CrossRef]
- Mir, I.; Gul, F.; Mir, S.; Khan, M.A.; Saeed, N.; Abualigah, L.; Abuhaija, B.; Gandomi, A.H. A Survey of Trajectory Planning Techniques for Autonomous Systems. Electronics 2022, 11, 2801. [Google Scholar] [CrossRef]
- Singh, M.; Pujar, G.V.; Kumar, S.A.; Bhagyalalitha, M.; Akshatha, H.S.; Abuhaija, B.; Alsoud, A.R.; Abualigah, L.; Beeraka, N.M.; Gandomi, A.H. Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications. Electronics 2022, 11, 2634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandomi, A.H.; Chen, F.; Abualigah, L. Big Data Analytics Using Artificial Intelligence. Electronics 2023, 12, 957. https://doi.org/10.3390/electronics12040957
Gandomi AH, Chen F, Abualigah L. Big Data Analytics Using Artificial Intelligence. Electronics. 2023; 12(4):957. https://doi.org/10.3390/electronics12040957
Chicago/Turabian StyleGandomi, Amir H., Fang Chen, and Laith Abualigah. 2023. "Big Data Analytics Using Artificial Intelligence" Electronics 12, no. 4: 957. https://doi.org/10.3390/electronics12040957
APA StyleGandomi, A. H., Chen, F., & Abualigah, L. (2023). Big Data Analytics Using Artificial Intelligence. Electronics, 12(4), 957. https://doi.org/10.3390/electronics12040957