A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer
Abstract
:1. Introduction
- (1)
- A fault diagnosis model named ECTN is introduced, which employs CNN and Transformer. This model integrates the inductive bias capacity of CNN for locality with the global information interaction ability of Transformer, which is effective in extracting fault features from TFRs.
- (2)
- The experimental results show that the proposed approach to fault diagnosis, which is based on STFT and ECTN, can be adopted to achieve high precision with constrained training data. Meanwhile, it shows robustness to noise and capability of generalization.
2. Methodology
2.1. Data Processing
2.2. Efficient Convolutional Transformer Network
2.3. Efficient Convolutional Module
2.3.1. Depthwise Convolution
2.3.2. Inverted Bottleneck Structure
2.3.3. Efficient Channel Attention
2.4. Transformer Module
2.4.1. Embedding Layer
2.4.2. Transformer Encoder
2.4.3. Class Token Extraction Layer
3. The Proposed Fault Diagnosis Method
- (1)
- Collect the original time-domain vibration signal of the rolling bearing through the sensor.
- (2)
- Segment the original signal into the samples of time domain signal with fixed length and divide them proportionally into the training set, validation set, and test set.
- (3)
- Convert 1D time domain signal samples into TFRs by means of Short Time Fourier Transform (STFT) and then convert TFRs into 224 × 224 size images.
- (4)
- Train the established ECTN model and validate it on the test set through the pre-processed TFRs image training ensemble.
- (5)
- Output the results of fault diagnosis and determine the fault class of the sample.
4. Experiments and Result Discussion
4.1. Experimental Setup
4.2. Comparison Methods and Evaluation Metrics
4.3. Case 1: CWRU Dataset
4.3.1. Description of CWRU Dataset
4.3.2. Performance on Different Samples Sizes
4.3.3. Performance on Noisy Environment
4.3.4. Performance on Domain Generation
4.3.5. Ablation Experiments
4.4. Case 2: PU Dataset
4.4.1. Description of PU Dataset
4.4.2. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Art I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, R.; He, G.; Liao, Y.; Wang, Z.; Li, W. A Two-Stage Transfer Adversarial Network for Intelligent Fault Diagnosis of Rotating Machinery With Multiple New Faults. IEEEASME Trans. Mechatron. 2021, 26, 1591–1601. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data: A Benchmark Study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Frank, P.M.; Ding, S.X.; Marcu, T. Model-Based Fault Diagnosis in Technical Processes. Trans. Inst. Meas. Control 2000, 22, 57–101. [Google Scholar] [CrossRef]
- Cococcioni, M.; Lazzerini, B.; Volpi, S.L. Robust Diagnosis of Rolling Element Bearings Based on Classification Techniques. IEEE Trans. Ind. Inform. 2013, 9, 2256–2263. [Google Scholar] [CrossRef]
- Xue, X.; Zhou, J. A Hybrid Fault Diagnosis Approach Based on Mixed-Domain State Features for Rotating Machinery. ISA Trans. 2017, 66, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Ettefagh, M.M.; Ghaemi, M.; Yazdanian Asr, M. Bearing Fault Diagnosis Using Hybrid Genetic Algorithm K-Means Clustering. In Proceedings of the 2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Alberobello, Italy, 23–25 June 2014; pp. 84–89. [Google Scholar]
- Song, W.; Xiang, J. A Method Using Numerical Simulation and Support Vector Machine to Detect Faults in Bearings. In Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 16–18 August 2017; pp. 603–607. [Google Scholar]
- Qu, J.; Zhang, Z.; Gong, T. A Novel Intelligent Method for Mechanical Fault Diagnosis Based on Dual-Tree Complex Wavelet Packet Transform and Multiple Classifier Fusion. Neurocomputing 2016, 171, 837–853. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C.; Cao, S.; Or, S.W.; Deng, C.; Shao, X. Degradation Data-Driven Time-To-Failure Prognostics Approach for Rolling Element Bearings in Electrical Machines. IEEE Trans. Ind. Electron. 2019, 66, 529–539. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, A.; Zhang, Q.; He, J.; Sun, G. Fault Diagnosis Based on Weighted Extreme Learning Machine With Wavelet Packet Decomposition and KPCA. IEEE Sens. J. 2018, 18, 8472–8483. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests. IEEE Sens. J. 2017, 17, 5581–5588. [Google Scholar] [CrossRef]
- Van, M.; Kang, H. Bearing-ault Diagnosis Using Non-ocal Means Algorithm and Empirical Mode Decomposition-ased Feature Extraction and Two-tage Feature Selection. IET Sci. Meas. Technol. 2015, 9, 671–680. [Google Scholar] [CrossRef]
- Fu, Q.; Jing, B.; He, P.; Si, S.; Wang, Y. Fault Feature Selection and Diagnosis of Rolling Bearings Based on EEMD and Optimized Elman_AdaBoost Algorithm. IEEE Sens. J. 2018, 18, 5024–5034. [Google Scholar] [CrossRef]
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review. Mech. Syst. Signal Process. 2018, 108, 33–37. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015. [Google Scholar]
- Collobert, R.; Weston, J. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–87. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, H.; Li, S.; Cui, Y.; Liu, Z.; Yang, G.; Hu, J. Transfer Learning with Deep Recurrent Neural Networks for Remaining Useful Life Estimation. Appl. Sci. 2018, 8, 2416. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A New Lightweight Deep Neural Network for Surface Scratch Detection. Int. J. Adv. Manuf. Technol. 2022, 123, 1999–2015. [Google Scholar] [CrossRef]
- Salakhutdinov, R. Deep Learning. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; p. 1973. [Google Scholar]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep Learning and Its Applications to Machine Health Monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, J.; Yan, R.; Gao, R.X. A New Intelligent Bearing Fault Diagnosis Method Using SDP Representation and SE-CNN. IEEE Trans. Instrum. Meas. 2020, 69, 2377–2389. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Zhang, Z. Fault Diagnosis of Multi-Channel Data by the CNN with the Multilinear Principal Component Analysis. Measurement 2021, 171, 108513. [Google Scholar] [CrossRef]
- Wang, X.; Mao, D.; Li, X. Bearing Fault Diagnosis Based on Vibro-Acoustic Data Fusion and 1D-CNN Network. Measurement 2021, 173, 108518. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Liu, S. Mechanical State Prediction Based on LSTM Neural Netwok. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3876–3881. [Google Scholar]
- Zhao, K.; Jiang, H.; Li, X.; Wang, R. An Optimal Deep Sparse Autoencoder with Gated Recurrent Unit for Rolling Bearing Fault Diagnosis. Meas. Sci. Technol. 2020, 31, 015005. [Google Scholar] [CrossRef]
- Qiao, M.; Yan, S.; Tang, X.; Xu, C. Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis Under Strong Noises and Variable Loads. IEEE Access 2020, 8, 66257–66269. [Google Scholar] [CrossRef]
- Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Yan, Z.; Tomizuka, M.; Gonzalez, J.; Keutzer, K.; Vajda, P. Visual Transformers: Token-Based Image Representation and Processing for Computer Vision. arXiv 2020, arXiv:2006.03677. [Google Scholar]
- Kolen, J.F.; Kremer, S.C. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies. In A Field Guide to Dynamical Recurrent Networks; IEEE: Piscataway, NJ, USA, 2001; pp. 237–243. ISBN 978-0-470-54403-7. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need; Google Brain & University of Toronto: Toronto, ON, Canada, 2017. [Google Scholar]
- Ding, Y.; Jia, M.; Miao, Q.; Cao, Y. A Novel Time-requency Transformer Based on Self-ttention Mechanism and Its Application in Fault Diagnosis of Rolling Bearings. Mech. Syst. Signal Process. 2022, 168, 108616. [Google Scholar] [CrossRef]
- Weng, C.; Lu, B.; Yao, J. A One-Dimensional Vision Transformer with Multiscale Convolution Fusion for Bearing Fault Diagnosis. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; p. 1. [Google Scholar]
- Tang, X.; Xu, Z.; Wang, Z. A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model. Sensors 2022, 22, 3878. [Google Scholar] [CrossRef]
- He, Q.; Li, S.; Bai, Q.; Zhang, A.; Yang, J.; Shen, M. A Siamese Vision Transformer for Bearings Fault Diagnosis. Micromachines 2022, 13, 1656. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2202.03752. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2019, arXiv:1801.04381. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2133–2143. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Chen, X.; Xie, S.; He, K. An Empirical Study of Training Self-Supervised Vision Transformers. arXiv 2021, arXiv:2104.02057. [Google Scholar]
- Lessmeier, C.; Kimotho, J.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. Mech. Syst. Signal Process. 2016, 66, 388–399. [Google Scholar]
- Zhang, X.; He, C.; Lu, Y.; Chen, B.; Zhu, L.; Zhang, L. Fault Diagnosis for Small Samples Based on Attention Mechanism. Measurement 2022, 187, 110242. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Zhang, A.; He, Q.; Liao, Z.; Hu, J. Meta-Learning for Few-Shot Bearing Fault Diagnosis under Complex Working Conditions. Neurocomputing 2021, 439, 197–211. [Google Scholar] [CrossRef]
Stage | Layer Type | Output Size | Kernel Size × Channels/Attention Heads |
---|---|---|---|
Input | 224 × 224 × 3 | / | |
Stage1 | Downsample | 56 × 56 × 24 | 4 × 4 × 24 |
N1 × EConv Block | 56 × 56 × 24 | ||
Stage2 | Downsample | 28 × 28 × 48 | 2 × 2 × 48 |
N2 × EConv Block | 28 × 28 × 48 | ||
Stage3 | Downsample | 14 × 14 × 96 | 2 × 2 × 96 |
N3 × EConv Block | 14 × 14 × 96 | ||
Stage4 | Downsample | 7 × 7 × 192 | 2 × 2 × 192 |
Patch Linear & Flatten | 49 × 192 | / | |
Class token & position encode | 50 × 192 | / | |
N4 × Transformer Encoder | 50 × 192 | 12 × 3 | |
Class Token Extraction | 1 × 192 | / | |
Classifier | Fully Connected | 1 × Fault Class Num |
Input Type | Methods Base | Implementation Detail |
---|---|---|
Time-based | 1DCNN | Details referred to [23]. |
RNN | Details referred to [45]. | |
Time-Frequency | Transformer | Details referred to [42]. |
CNN | Details referred to [39]. | |
ECTN(our) | As shown in Table 1. |
Fault Location | None | Ball | Inner Ring | Outer Ring | Load | RPM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fault Diameter(inch) | 0 | 0.007 | 0.014 | 0.021 | 0.007 | 0.014 | 0.021 | 0.007 | 0.014 | 0.021 | |||
Class Labels | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
Dataset A | Train | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 1 | 1772 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | |||
Test | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | |||
Dataset B | Train | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 2 | 1750 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | |||
Test | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | |||
Dataset C | Train | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 3 | 1730 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | |||
Test | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
Input Type | Model | Mean Accuracy | Best Accuracy | Std | Params Num | Training Time (s) |
---|---|---|---|---|---|---|
Time-based | 1DCNN | 97.62% | 98.89% | 0.92 | 54,310 | 33.867 |
RNN | 99.54% | 100% | 0.55 | 50,804 | 95.649 | |
Time-Frequency | Transformer | 84.82% | 86.2% | 0.87 | 2,819,146 | 183.050 |
CNN | 99.04% | 99.2% | 0.11 | 2,052,126 | 366.308 | |
ECTN | 99.62% | 100% | 0.26 | 2,229,655 | 282.203 |
Methods | A–B | A–C | B–A | B–C | C–A | C–B | Average |
---|---|---|---|---|---|---|---|
1DCNN | 96.62 | 85.44 | 94.71 | 94.60 | 81.46 | 84.21 | 89.51 |
RNN | 95.84 | 89.25 | 94.08 | 86.37 | 74.08 | 78.63 | 8637 |
Transformer | 73.37 | 45.10 | 73.37 | 59.83 | 62.10 | 7457 | 64.72 |
CNN | 99.20 | 82.00 | 92.10 | 92.30 | 82.50 | 96.43 | 9076 |
ECTN(our) | 99.37 | 92.38 | 96.97 | 97.60 | 85.53 | 96.57 | 94.74 |
A–B | A–C | B–A | B–C | C–A | C–B | Average | |
---|---|---|---|---|---|---|---|
ECTN | 99.37 | 92.38 | 96.97 | 97.60 | 85.53 | 96.57 | 94.74 |
(w/o) Econv | 78.00 | 62.80 | 81.93 | 75.13 | 73.73 | 8430 | 75.98 |
(w/o) Transformer | 98.93 | 88.67 | 97.67 | 94.37 | 77.07 | 91.93 | 91.44 |
(w/o) Econv & Transformer | 97.10 | 77.60 | 91.03 | 93.07 | 76.70 | 90.50 | 87.67 |
DataSets | Rotational Speed (rpm) | Load Torque (Nm) | Radial Force (n) | Name of Setting |
---|---|---|---|---|
D | 1500 | 0.7 | 1000 | N15_M01_F10 |
E | 1500 | 0.1 | 1000 | N15_M07_F04 |
F | 1500 | 0.7 | 400 | N15_M07_F10 |
Fault Location | None | Outer Ring | Inner Ring |
---|---|---|---|
File NO. | K001 K002 | KA01 (Artificial) KA04 (Real) | KI01 (Artificial) KI14 (Real) |
Fault Location | None | Outer Ring | Inner Ring | ||||
---|---|---|---|---|---|---|---|
Fault Labels | K001 | K002 | KA01 | KA03 | KI01 | KI14 | |
0 | 1 | 2 | 3 | 4 | 5 | ||
Dataset D | Train | 600 | 600 | 600 | 600 | 600 | 600 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | |
Test | 200 | 200 | 200 | 200 | 200 | 200 | |
Dataset E | Train | 600 | 600 | 600 | 600 | 600 | 600 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | |
Test | 200 | 200 | 200 | 200 | 200 | 200 | |
Dataset F | Train | 600 | 600 | 600 | 600 | 600 | 600 |
Valid | 200 | 200 | 200 | 200 | 200 | 200 | |
Test | 200 | 200 | 200 | 200 | 200 | 200 |
Methods | D–D | D–E | D–F | E–E | E–D | E–F | F–F | F–D | F–E | Average |
---|---|---|---|---|---|---|---|---|---|---|
1DCNN | 90.83 | 81.89 | 89.81 | 92.13 | 80.72 | 89.56 | 93.04 | 90.00 | 90.00 | 88.66 |
RNN | 88.99 | 87.17 | 89.58 | 92.70 | 84.72 | 91.19 | 9037 | 83.22 | 85.72 | 88.19 |
Transformer | 79.72 | 66.56 | 80.67 | 80.11 | 71.83 | 8228 | 85.50 | 77.39 | 78.56 | 78.07 |
CNN | 88.94 | 89.03 | 85.39 | 93.50 | 89.63 | 87.67 | 8917 | 88.51 | 85.78 | 88.62 |
ECTN(our) | 94.33 | 89.94 | 92.61 | 97.44 | 89.37 | 90.22 | 93.39 | 91.34 | 90.13 | 91.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Z.; Zhang, J.; Huang, H.; Zhang, G.; Peng, M. A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer. Electronics 2023, 12, 1838. https://doi.org/10.3390/electronics12081838
Liu W, Zhang Z, Zhang J, Huang H, Zhang G, Peng M. A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer. Electronics. 2023; 12(8):1838. https://doi.org/10.3390/electronics12081838
Chicago/Turabian StyleLiu, Wenkai, Zhigang Zhang, Jiarui Zhang, Haixiang Huang, Guocheng Zhang, and Mingda Peng. 2023. "A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer" Electronics 12, no. 8: 1838. https://doi.org/10.3390/electronics12081838
APA StyleLiu, W., Zhang, Z., Zhang, J., Huang, H., Zhang, G., & Peng, M. (2023). A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer. Electronics, 12(8), 1838. https://doi.org/10.3390/electronics12081838