SIW Leaky Wave Antenna for THz Applications
Abstract
:1. Introduction
2. Design Methodology and Antenna Array
2.1. Design of SIW
2.2. Design Concept
2.3. Geometry
3. Experiment Results
3.1. Geometry
3.2. S Parameters
3.3. Radiation Features
3.4. Fabrication as Well as Measurement Issues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, W.W. Radiating Electromagnetic Waveguide. U.S. Patent No. 2,402,622,1940, 26 November 1940. [Google Scholar]
- Marcuvitz, N. On field representation in terms of leaky modes or eigenmodes. IRE Trans. 1956, 4, 192–194. [Google Scholar]
- Nishida, S. Leaky wave antennas. Electron. Commun. Jpn. 1965, 48, 42–48. [Google Scholar]
- Goldstone, L.O.; Oliner, A.A. Leaky-wave antennas—Part I: Rectangular waveguides. IRE Trans. Antennas Propag. 1959, 7, 307–319. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Hong, W.; Wu, K.; Fan, Y. Millimeter-wave substrate integrated waveguide long slot leaky-wave antennas and two- dimensional multibeam applications. IEEE Trans. Antennas Propag. 2011, 59, 40–47. [Google Scholar] [CrossRef]
- Lyu, Y.; Member, S.; Liu, X. Leaky-wave antennas based on non-cutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Trans. Antennas Propag. 2016, 64, 2155–2164. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.; Long, Y. Investigation of shorting vias for suppressing the open stopband in an SIW periodic leaky-wave structure. IEEE Trans. Microw. Theory Tech. 2018, 66, 2936–2945. [Google Scholar]
- Agrawal, R.; Belwal, P.; Gupta, S. Asymmetric substrate integrated waveguide leaky wave antenna with open stop band suppression and radiation efficiency equalization through broadside. Radioengineering 2018, 27, 409–416. [Google Scholar] [CrossRef]
- Liu, J.; Jackson, D.R.; Long, Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans. Antennas Propag. 2012, 60, 20–29. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Li, Y.; Long, Y. Substrate integrated waveguide leaky-wave antenna with H-shaped slots. IEEE Trans. Antennas Propag. 2012, 60, 3962–3967. [Google Scholar] [CrossRef]
- Liu, L.; Caloz, C.; Itoh, T. Dominant mode (DM) leaky wave antenna with backfire-to-endfire scanning capability. Electronics Lett. 2003, 38, 1414–1416. [Google Scholar] [CrossRef]
- Caloz, C.; Itoh, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Guglielmi, M.; Jackson, D. Broadside radiation from periodic leaky-wave antennas. IEEE Trans. Antennas Propag. 1993, 41, 31–37. [Google Scholar] [CrossRef]
- Paulotto, S.; Baccarelli, P.; Frezza, F.; Jackson, D.R. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans. Antennas Propag. 2009, 57, 1894–1906. [Google Scholar] [CrossRef]
- Gomez-Torrent, A.; Garcia-Vigueras, M.; Le Coq, L.; Mahmoud, A.; Ettorre, M.; Sauleau, R.; Oberhammer, J. A Low-Profile and High-Gain Frequency Beam Steering Subterahertz Antenna Enabled by Silicon Micromachining. IEEE Trans. Antennas Propag. 2020, 68, 672–682. [Google Scholar] [CrossRef]
- Monnai, Y. Terahertz Radar Based on Leaky-Wave Coherence Tomography. In Proceedings of the 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020—Proceedings, Sydney, Australia, 2–6 August 2020; pp. 1–2. [Google Scholar]
- Rikkinen, K.; Kyosti, P.; Leinonen, M.E.; Berg, M.; Parssinen, A. THz Radio Communication: Link Budget Analysis toward 6G. IEEE Commun. Mag. 2020, 58, 22–27. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Selective Audio Adversarial Example in Evasion Attack on Speech Recognition System. IEEE Trans. Inf. Forensics Secur. 2020, 15, 526–538. [Google Scholar] [CrossRef]
- Brown, E.R. Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing. Int. J. High Speed Electron. Syst. 2003, 13, 995–1097. [Google Scholar] [CrossRef] [Green Version]
- Golubiatnikov, G.Y.; Koshelev, M.A.; Tsvetkov, A.I.; Fokin, A.P.; Glyavin, M.Y.; Tretyakov, M.Y. Sub-Terahertz High-Sensitivity High-Resolution Molecular Spectroscopy with a Gyrotron. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 502–512. [Google Scholar] [CrossRef]
- Guerboukha, H.; Shrestha, R.; Neronha, J.; Ryan, O.; Hornbuckle, M.; Fang, Z.; Mittleman, D.M. Efficient Leaky-Wave Antennas at Terahertz Frequencies Generating Highly Directional Beams. Appl. Phys. Lett. 2020, 117, 261103. [Google Scholar] [CrossRef]
- Agarwal, R.; Agarwal, A.; Dwivedi, A.; Sharma, A. Leaky Wave Antenna for Millimeter Wave Utilization. J. Phys. Conf. Ser. 2021, 1921, 012026. [Google Scholar] [CrossRef]
- Ghalibafan, J.; Hashemi, S.M. Leaky-Wave Centerline Longitudinal Slot Antenna Fed by Transversely Magnetized Ferrite. IEEE Trans. Magn. 2016, 52, 4000104. [Google Scholar] [CrossRef]
- Zheng, D.; Lyu, Y.-L.; Wu, K. Transversely Slotted SIW Leaky-Wave Antenna Applications. IEEE Trans. Antennas Propag. 2020, 68, 4172–4185. [Google Scholar] [CrossRef]
- Ranjan, R.; Ghosh, J. SIW-Based Leaky-Wave Antenna Supporting Wide Range of Beam Scanning Through Broadside. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 606–610. [Google Scholar] [CrossRef]
- Saghati, A.P.; Mirsalehi, M.M.; Neshati, M.H. A HMSIW Circularly Polarized Leaky-Wave Antenna With. IEEE Trans. Antennas Propag. 2014, 13, 451–454. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Li, Y.; Long, Y. Periodic Microstrip Leaky Wave Antenna with Double-Sided Shorting Pins and Pairs of Slots. Int. J. Antennas Propag. 2020, 2020, 7101752. [Google Scholar] [CrossRef]
- Martinez-Ros, A.J.; Gómez-Tornero, J.L.; Goussetis, G. Planar Leaky-Wave Antenna with Flexible Control of the Complex Propagation Constant. IEEE Trans. Antennas Propag. 2012, 60, 1625–1630. [Google Scholar] [CrossRef]
- Grbic, A.; Eleftheriades, G.V. Leaky CPW-Based Slot Antenna Arrays for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2002, 50, 494–1504. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Limiti, E. Beam-Scanning Leaky-Wave Antenna Based on CRLH-Metamaterial for Millimetre-Wave Applications Mohammad. IET Microw. Antennas Propag. 1941, 74, 535–546. [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-0-470-63155-3. [Google Scholar]
- Xu, S.; Gao, H. Double Dielectric Grating Leaky-Wave Antenna-Improved Perturbation Analysis. Int. J. Infrared Millim. Waves 1989, 10, 1103–1119. [Google Scholar] [CrossRef]
- Hammad, H.F.; Antar, Y.M.; Freundorfer, A.P.; Sayer, M. Frequency. IEEE Trans. Antennas Propag. 2004, 52, 36–44. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, S. A Novel Dual-Beam Terahertz Leaky-Wave Antenna Based On Spoof Surface Plasmon Waveguide. Optoelectron. Lett. 2022, 18, 404–407. [Google Scholar] [CrossRef]
- Choi, J.H.; Itoh, T. Beam-Scanning Leaky-Wave Antennas. In Handbook of Antenna Technologies; Chen, Z., Ed.; Springer: Singapore, 2015. [Google Scholar] [CrossRef]
- Salman, A.O. On the antenna efficiencies for the dielectric leaky-wave antennas with a sinusoidal metallic diffraction grating coupled from the broad and the narrow face of the dielectric. Microw. Opt. Technol. Lett. 2011, 53, 2030–2034. [Google Scholar]
- Aysu, B.; Filiz, G.; Merih, P.; Ozlem, T.; Peyman, M. 3D EM Data Driven Surrogate Based Design Optimization of Traveling Wave Antennas for Beam Scanning In X-Band: An Application Example. Wirel. Netw. 2022, 28, 1827–1834. [Google Scholar] [CrossRef]
- Zandamela, A.; Al-Bassam, A.; Heberling, D. Circularly Polarized Periodic Leaky-Wave Antenna Based on Dielectric Image Line for Millimeter-Wave Radar Applications. IEEE Antennas Wirel. Propag. Letter. 2021, 20, 938–942. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Guo, Y.X.; Bao, X.Y.; Ng, K.B. Millimeter-Wave Low Temperature Co-Fired Ceramic Leaky-Wave Antenna and Array Based on the Substrate Integrated Image Guide Technology. IEEE Trans. Antennas Propag. 2014, 62, 669–676. [Google Scholar] [CrossRef]
- Patrovsky, A.; Wu, K. Substrate Integrated Image Guide Array Antenna for the Upper Millimeter-Wave Spectrum. IEEE Trans. Antennas Propag. 2007, 55, 2994–3001. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Yin, X.; Chen, Z.N. Wide-Angle Beam Scanning Leaky-Wave Antenna Using Spoof Surface Plasmon Polaritons Structure. Electronics 2018, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Fuscaldo, W.; Zografopoulos, D.C.; Imperato, F.; Burghignoli, P.; Beccherelli, R.; Galli, A. Analysis and Design of Tunable THz 1-D Leaky-Wave Antennas Based on Nematic Liquid Crystals. Appl. Sci. 2022, 12, 11770. [Google Scholar] [CrossRef]
- Sharma, J.; De, A. Full-Wave Analysis of Dielectric Rectangular Waveguides. Prog. Electromagn. Res. M 2010, 13, 121–131. [Google Scholar]
- Torabi, Y.; Dadashzadeh, G.; Hadeie, M.; Oraizi, H.; Lalbakhsh, A. A Wide-Angle Scanning Sub-Terahertz Leaky-Wave Antenna Based on a Multilayer Dielectric Image Waveguide. Electronics 2021, 10, 2172. [Google Scholar]
- Tesmer, H.; Razzouk, R.; Polat, E.; Wang, D.; Jakoby, R.; Maune, H. Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications. Crystals 2021, 11, 63. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-Metal Wideband Metasurface for near-Field Transformation of Medium-to-High Gain Electromagnetic Sources. Sci. Rep. 2021, 11, 9421. [Google Scholar] [CrossRef] [PubMed]
- Mirmozafari, M.; Zhang, Z.; Gao, M.; Zhao, J.; Honari, M.M.; Booske, J.H.; Behdad, N. Mechanically Reconfigurable, Beam-Scanning Reflectarray and Transmitarray Antennas: A Review. Appl. Sci. 2021, 11, 6890, ISBN 0000000211512. [Google Scholar] [CrossRef]
- Goudarzi, A.; Honari, M.M.; Gharaati; Mirzavand, R. A Cavity-Backed Antenna with a Tilted Directive Beam for 5G Applications. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1737–1738. [Google Scholar]
- Afzal, M.U.; Matekovits, L.; Esselle, K.P.; Lalbakhsh, A. Beam-Scanning Antenna Based on near-Electric Field Phase Transformation and Refraction of Electromagnetic Wave through Dielectric Structures. IEEE Access 2020, 8, 199242–199253. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Ahmed, M.I.; Abdelkader, H.M. A Novel Compact High Gain Wide-Band Log Periodic Dipole Array Antenna for Wireless Communication Systems. J. Infrared Millim. Terahertz Waves 2022, 43, 872–894. [Google Scholar] [CrossRef]
- Kishihara, M.; Ohta, I.; Okubo, K.; Yamakita, J. Analysis of Post-Wall Waveguide Based on H-Plane Planar Circuit Approach. IEICE Trans. Electron. 2009, E92-C, 63–71. [Google Scholar] [CrossRef]
- Cassivi, Y.; Perregrini, L.; Arcioni, P.; Bressan, M.; Wu, K.; Conciauro, G. Dispersion Characteristics of Substrate Integrated Rectangular Waveguide. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 333–335. [Google Scholar] [CrossRef]
- Ghasemi, A.; Laurin, J.-J. A Continuous Beam Steering Slotted Waveguide Antenna Using Rotating Dielectric Slabs. IEEE Trans. Antennas Propag. 2021, 67, 6362–6370. [Google Scholar] [CrossRef] [Green Version]
- Sarabandi, K.; Jam, A.; Vahidpour, M.; East, J. A Novel Frequency Beam-Steering Antenna Array for Submillimeter-Wave Applications. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 654–665. [Google Scholar] [CrossRef]
- Arya, V.; Garg, T.; Al-Khafaji, H.M.R. High Gain and Wide-Angle Continuous Beam Scanning SIW Leaky-Wave Antenna. Electronics 2023, 12, 370. [Google Scholar]
Parameters | Values (mm) |
---|---|
P | 14.7 |
W | 16 |
AL | 5.5 |
AT | 3.6 |
D | 1 |
B | 0.8 |
C | 1.5 |
S | 2 |
Weff | 14 |
References | Broadside Radiation | Radiator Length | Range of Scanning Frequency (GHz) | Range of Beam Scanning (Degree) | Max. Gain |
---|---|---|---|---|---|
[15] | No | ~10 | 220 to 300 | −75° to −30° (Backward Only) | ~28.5 dBi |
[38] | Yes | ~11.1 | 75 to 85 | −10° to −8° | ~12.7 dBi |
[39] | No | ~2.6 | 58 to 67 | +7° to +38° (Forward Only) | ~11.7 dBi |
[40] | Yes | ~6 | 86 to 106 | −31° to +10° | ~11 dBi |
[53] | No | ~12 | 55 to 67 | 4° to 18° (Forward Only) | ~6 dBi |
[54] | Yes | ~8 | 230 to 245 | −25° to 25° | ~29 dBi |
[44] | Yes | ~6.9 | 157.5 to 206 | −23° to +38° | ~15 dBi |
This work | Yes | ~6.84 | 105 to 109 | +78° to −6° | ~16.02 dBi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, V.; Garg, T.; Al-Khafaji, H.M.R. SIW Leaky Wave Antenna for THz Applications. Electronics 2023, 12, 1839. https://doi.org/10.3390/electronics12081839
Arya V, Garg T, Al-Khafaji HMR. SIW Leaky Wave Antenna for THz Applications. Electronics. 2023; 12(8):1839. https://doi.org/10.3390/electronics12081839
Chicago/Turabian StyleArya, Vivek, Tanuj Garg, and Hamza Mohammed Ridha Al-Khafaji. 2023. "SIW Leaky Wave Antenna for THz Applications" Electronics 12, no. 8: 1839. https://doi.org/10.3390/electronics12081839
APA StyleArya, V., Garg, T., & Al-Khafaji, H. M. R. (2023). SIW Leaky Wave Antenna for THz Applications. Electronics, 12(8), 1839. https://doi.org/10.3390/electronics12081839