Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots
Abstract
:1. Introduction
2. Related Work
2.1. Statistical Method
2.2. Spectrographic Method
2.3. Model Method
2.4. Deep Learning Method
3. Proposed Method
3.1. Attention Mechanism
3.2. Dilated Convolution
3.3. Loss Function
4. Experiment
4.1. Dataset
4.2. Evaluation Metrics
4.3. Setting and Training
4.4. Comparison with the-Sate-of-Art Methods on NEU-DET
4.5. Ablation Study
4.6. Analysis of Attention Mechanisms
4.7. Visualization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuo, B.; Wang, F. Surface cutting defect detection of magnet using Fourier image reconstruction. Comput. Eng. Appl. 2016, 52, 256–260. [Google Scholar]
- Chetverikov, D.; Hanbury, A. Finding defects in texture using regularity and local orientation. Pattern Recognit. 2002, 35, 2165–2180. [Google Scholar] [CrossRef]
- Hou, Z.; Parker, J.M. Texture defect detection using support vector machines with adaptive gabor wavelet features. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05), Breckenridge, CO, USA, 5–7 January 2005; Volume 1, pp. 275–280. [Google Scholar]
- Peng, X.; Chen, Y.; Yu, W.; Zhou, Z.; Sun, G. An online defects inspection method for float glass fabrication based on machine vision. Int. J. Adv. Manuf. Technol. 2008, 39, 1180–1189. [Google Scholar] [CrossRef]
- Murino, V.; Bicego, M.; Rossi, I.A. Statistical classification of raw textile defects. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR, Cambridge, UK, 23–26 August 2004; Volume 4, pp. 311–314. [Google Scholar]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- De Luca, G.; Chen, Y. Explainable artificial intelligence for workflow verification in visual IoT/robotics programming language environment. J. Artif. Intell. Technol. 2021, 1, 21–27. [Google Scholar]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.P.; Ya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Bai, C.; Zheng, A.; Huang, Y.; Pan, X.; Chen, N. Boosting Convolutional Image Captioning with Semantic Content and Visual Relationship. Displays 2021, 70, 102069. [Google Scholar] [CrossRef]
- Zan, J. Research on robot path perception and optimization technology based on whale optimization algorithm. J. Comput. Cogn. Eng. 2022, 1, 201–208. [Google Scholar]
- Bai, C.; Zhang, M.; Zhang, J.; Zheng, J.; Chen, S. LSCIDMR: Large-Scale Satellite Cloud Image Database for Meteorological Research. IEEE Trans. Cybern. 2022, 52, 12538–12550. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning fordetecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1486–1498. [Google Scholar] [CrossRef]
- He, Y.; Song, K.; Meng, Q.; Yan, Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 2019, 69, 1493–1504. [Google Scholar] [CrossRef]
- Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 2018, 51, 76–81. [Google Scholar] [CrossRef]
- Zhang, C.; Chang, C.C.; Jamshidi, M. Concrete bridge surface damage detection using a single-stage detector. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 389–409. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Chen, S.H.; Tsai, C.C. SMD LED chips defect detection using a YOLOv3-dense model. Adv. Eng. Inform. 2021, 47, 101255. [Google Scholar] [CrossRef]
- Yu, N.; Chen, H.; Xu, Q.; Hasan, M.M.; Sie, O. Wafer map defect patterns classification based on a lightweight network and data augmentation. CAAI Trans. Intell. Technol. 2022. [Google Scholar] [CrossRef]
- Chan, S.; Zheng, J.; Wang, L.; Wang, T.; Zhou, X.; Xu, Y.; Fang, K. Rotating object detection in remote-sensing environment. Soft Comput. 2022, 26, 8037–8045. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tsai, D.M.; Chen, M.C.; Li, W.C.; Chiu, W.Y. A fast regularity measure for surface defect detection. Mach. Vis. Appl. 2012, 23, 869–886. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Gan, J.; Yu, H.; Yang, X. Surface defect detection via entity sparsity pursuit with intrinsic priors. IEEE Trans. Ind. Inform. 2019, 16, 141–150. [Google Scholar] [CrossRef]
- Song, K.Y.; Kittler, J.; Petrou, M. Defect detection in random colour textures. Image Vis. Comput. 1996, 14, 667–683. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Yuan, X.; Li, L.; Sun, B. Distributed defect recognition on steel surfaces using an improved random forest algorithm with optimal multi-feature-set fusion. Multimed. Tools Appl. 2018, 77, 16741–16770. [Google Scholar] [CrossRef]
- Tsai, D.M.; Hsieh, C.Y. Automated surface inspection for directional textures. Image Vis. Comput. 1999, 18, 49–62. [Google Scholar] [CrossRef]
- Tsai, D.M.; Huang, T.Y. Automated surface inspection for statistical textures. Image Vis. Comput. 2003, 21, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Tsai, I.S.; Hu, M.C. Automatic inspection of fabric defects using an artificial neural network technique. Text. Res. J. 1996, 66, 474–482. [Google Scholar] [CrossRef]
- Chan, C.H.; Pang, G. Fabric defect detection by Fourier analysis. In Proceedings of the Conference Record of the 1999 IEEE Industry Applications Conference, Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370), Phoenix, AZ, USA, 3–7 October 1999; Volume 3, pp. 1743–1750. [Google Scholar]
- Choi, D.c.; Jeon, Y.J.; Kim, S.H.; Moon, S.; Yun, J.P.; Kim, S.W. Detection of pinholes in steel slabs using Gabor filter combination and morphological features. Isij Int. 2017, 57, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Zuniga, A.G.; Florindo, J.B.; Bruno, O.M. Gabor wavelets combined with volumetric fractal dimension applied to texture analysis. Pattern Recognit. Lett. 2014, 36, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Jasper, W.J.; Garnier, S.J.; Potlapalli, H. Texture characterization and defect detection using adaptive wavelets. Opt. Eng. 1996, 35, 3140–3149. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, S. Real time DSP based identification of surface defects using content-based imaging technique. In Proceedings of the IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No. 00TH8482), Goa, India, 19–22 January 2000; Volume 2, pp. 113–118. [Google Scholar]
- Mao, J.; Jain, A.K. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognit. 1992, 25, 173–188. [Google Scholar] [CrossRef]
- Cohen, F.S.; Fan, Z.; Attali, S. Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 803–808. [Google Scholar] [CrossRef]
- Baykut, A.; Atalay, A.; Erçil, A.; Güler, M. Real-time defect inspection of textured surfaces. Real-Time Imaging 2000, 6, 17–27. [Google Scholar] [CrossRef]
- Xie, X.; Mirmehdi, M. TEXEMS: Texture exemplars for defect detection on random textured surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1454–1464. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Song, M.; Yang, C.; Zhou, P. Application of hidden Markov tree model to on-line detection of surface defects for steel strips. J. Mech. Eng. 2013, 49, 11. [Google Scholar] [CrossRef]
- Bai, C.; Huang, L.; Pan, X.; Zheng, J.; Chen, S. Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 2018, 303, 60–67. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Yang, Q.; Wang, J.; Li, S.; Lei, W. Detection of rail surface defects based on CNN image recognition and classification. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Republic of Korea, 11–14 February 2018; pp. 45–51. [Google Scholar]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy 2019, 189, 116319. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Deng, J.; Lu, Y.; Lee, V.C.S. Imaging-based crack detection on concrete surfaces using You Only Look Once network. Struct. Health Monit. 2021, 20, 484–499. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar]
Network Model | Backbone | mAP | Model Size |
---|---|---|---|
Baseline | Resnet50 | 77.72 | 124 M |
Faster R-CNN [48] | VGG16 | 66.14 | 150 M |
CenterNet [49] | Resnet50 | 70.07 | 148 M |
RetinaNet [50] | Resnet50 | 68.54 | 147 M |
YOLOv4 [51] | CSPDarkNet53 | 71.94 | 224 M |
YOLOv7 [52] | E-ELAN | 74.83 | 144 M |
Cascade R-CNN [53] | Resnet50 | 73.33 | 210 M |
Ours | Resnet50 | 81.79 | 114 M |
CR | RS | SC | IN | PA | PI | mAP | |
---|---|---|---|---|---|---|---|
Baseline | 0.41 | 0.75 | 0.96 | 0.84 | 0.96 | 0.75 | 77.72 |
Baseline + SE | 0.55 | 0.71 | 0.91 | 0.84 | 0.98 | 0.79 | 79.49 |
Baseline + dilation | 0.50 | 0.75 | 0.95 | 0.85 | 0.97 | 0.77 | 80.05 |
Baseline + dilation + SE | 0.59 | 0.71 | 0.96 | 0.85 | 0.98 | 0.83 | 81.79 |
Attention | mAP |
---|---|
Baseline | 77.72 |
Baseline + SE | 79.49 |
Baseline + ECA | 79.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Chan, S.; Tang, T.; Zhou, X.; Yao, Y.; Zhang, H. Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots. Electronics 2023, 12, 1856. https://doi.org/10.3390/electronics12081856
Yu Y, Chan S, Tang T, Zhou X, Yao Y, Zhang H. Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots. Electronics. 2023; 12(8):1856. https://doi.org/10.3390/electronics12081856
Chicago/Turabian StyleYu, Yuanfan, Sixian Chan, Tinglong Tang, Xiaolong Zhou, Yuan Yao, and Hongkai Zhang. 2023. "Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots" Electronics 12, no. 8: 1856. https://doi.org/10.3390/electronics12081856
APA StyleYu, Y., Chan, S., Tang, T., Zhou, X., Yao, Y., & Zhang, H. (2023). Surface Defect Detection of Hot Rolled Steel Based on Attention Mechanism and Dilated Convolution for Industrial Robots. Electronics, 12(8), 1856. https://doi.org/10.3390/electronics12081856