Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip
Abstract
:1. Introduction
2. Irradiation Tests
3. Results and Discussions
3.1. Detected Events
3.2. B Influence
3.3. Hf Influence
3.4. Monte Carlo Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dyer, C.; Hands, A.; Ford, K.; Frydland, A.; Truscott, P. Neutron-induced single event effect testing across a wide range of energies and facilities and implications for standards. IEEE Trans. Nucl. Sci. 2006, 53, 3596–3601. [Google Scholar] [CrossRef]
- Normand, E. Single-Event Effects in Avionics. IEEE Trans. Nucl. Sci. 1996, 43, 461–474. [Google Scholar] [CrossRef]
- Leray, J.L. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems. Microelectron. Reliab. 2007, 47, 1827–1835. [Google Scholar] [CrossRef]
- Song, Y.; Tu, X.; Li, Z. A Detection Method of Atmospheric Neutron Profile for Single Event Effects Analysis of Civil Aircraft Design. Atmosphere 2022, 13, 1441. [Google Scholar] [CrossRef]
- Baumann, R.C. Landmarks in Terrestrial Single-Event Effects. In Proceedings of the Nuclear and Space Radiation Effects Conference (NSREC), San Francisco, CA, USA, 8–12 July 2013. [Google Scholar]
- Autran, J.L.; Munteanu, D.; Roche, P.; Gasiot, G.; Martinie, S.; Uznanski, S.; Sauze, S.; Semikh, S.; Yakushev, E.; Rozov, S.; et al. Soft-errors induced by terrestrial neutrons and natural alpha-particle emitters in advanced memory circuits at ground level. Microelectron. Reliab. 2010, 50, 1822–1831. [Google Scholar] [CrossRef]
- Bisello, D.; Candelori, A.; Dzysiuk, N.; Mastinu, P.; Mattiazzo, S.; Prete, G.; Silvestrin, L.; Wyss, J. Neutron production targets for a new Single Event Effects facility at the 70 MeV Cyclotron of LNL-INFN. Phys. Procedia 2012, 26, 284–293. [Google Scholar] [CrossRef]
- Lesea, A.; Drimer, S.; Fabula, J.J.; Carmichael, C.; Alfke, P. The Rosetta experiment: Atmospheric soft error rate testing in differing technology FPGAs. IEEE Trans. Dev. Mat. Reliab. 2005, 5, 317–328. [Google Scholar] [CrossRef]
- Lesea, A.; Castellani-Coulié, K.; Waysand, G.; Le Mauff, J.; Sudre, C. Qualification Methodology for Sub-Micron ICs at the Low Noise Underground Laboratory of Rustrel. IEEE Trans. Nucl. Sci. 2008, 55, 2148–2153. [Google Scholar] [CrossRef]
- Xilinx. Continuing Experiments of Atmospheric Neutron Effects on Deep Submicron Integrated Circuits WP286 (v1.1). 13 October 2011. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51222cecfc39e38d06cf94d6f95c462ecf910a2d (accessed on 3 March 2023).
- Chen, W.; Guo, X.; Wang, C.; Zhang, F.; Qi, C.; Wang, X.; Jin, X.; Wei, Y.; Yang, S.; Song, Z. Single-event upsets in SRAMs with scaling technology nodes induced by terrestrial, nuclear reactor, and monoenergetic neutrons. IEEE Trans. Nucl. Sci. 2019, 66, 856–865. [Google Scholar] [CrossRef]
- Chen, W. Irradiation testing and simulation of neutron-induced single event effects. In Proceedings of the 26th International Seminar on Interaction of Neutrons with Nuclei, Xi’an, China, 28 May–1 June 2018. [Google Scholar]
- Zhang, J.L.; Tan, Y.H.; Wang, H.; Lu, H.; Meng, X.C.; Muraki, Y. The Yangbajing muon–neutron telescope. Nucl. Inst. Meth. Phys. Res. A 2010, 623, 1030–1034. [Google Scholar] [CrossRef]
- Jin, X.M.; Chen, W.; Li, J.L.; Qi, C.; Guo, X.Q.; Li, R.B.; Liu, Y. Single event upset on static random access memory devices due to spallation, reactor, and monoenergetic neutrons. Chin. Phys. B 2019, 28, 104212. [Google Scholar] [CrossRef]
- Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C.D.; Picozza, P.; Gorini, G.; Mancini, R.; et al. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source. AIP Adv. 2018, 8, 025013. [Google Scholar] [CrossRef]
- Hu, Z.L.; Yang, W.T.; Zhou, B.; Liu, Y.N.; He, C.; Wang, S.L.; Yu, Q.Z.; Liang, T.J. Neutron-induced single event effect in Xilinx 16nm MPSoC configuration RAM (CRAM) using white neutron and 2.72~81.8meV neutron in CSNS-BL20. J. Nucl. Sci. Technol. 2023, 60, 473–478. [Google Scholar] [CrossRef]
- Baumann, R.C.; Smith, E.B. Neutron-induced 10B fission as a major source of soft errors in high density SRAMs. Microelectron. Reliab. 2001, 41, 211. [Google Scholar] [CrossRef]
- Lucas, M.L.; Daniel, S.; Helmut, P.; Rubén, G.A.; Manon, L.; Carlo, C.; Alberto, B.; Luigi, D. Neutron-induced effects on a self-refresh DRAM. Microelectron. Reliab. 2022, 128, 114406. [Google Scholar]
- Kumar, S.; Agarwal, S.; Jung, J.P. Soft error issue and importance of low alpha solders for microelectronics packaging. Rev. Adv. Mater. Sci. 2013, 34, 185–202. [Google Scholar]
- Wen, S.J.; Pai, S.Y.; Wong, R.; Romain, M.; Tam, N. B10 finding and correlation to thermal neutron soft error rate sensitivity for SRAMs in the sub-micron technology. In Proceedings of the IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 15–18 October 2010. [Google Scholar]
- Cecchetto, M.; Alía, R.G.; Wrobel, F.; Tali, M.; Stein, O.; Lerner, G.; Bilko, K.; Esposito, L.; Castro, C.B.; Kadi, Y.; et al. Thermal neutron-induced SEUs in the LHC accelerator environment. IEEE Trans. Nucl. Sci. 2020, 67, 1412–1420. [Google Scholar] [CrossRef]
- Weulersse, C.; Houssany, S.; Guibbaud, N.; Segura-Ruiz, J.; Beaucour, J.; Miller, F.; Mazurek, M. Contribution of Thermal Neutrons to Soft Error Rate. IEEE Trans. Nucl. Sci. 2018, 65, 1851–1857. [Google Scholar] [CrossRef]
- Fang, Y.P.; Oates, A.S. Thermal neutron-induced soft errors in advanced memory and logic devices. IEEE Trans. Device Mater. Rel. 2014, 14, 583–586. [Google Scholar] [CrossRef]
- Yamazaki, T.; Kato, T.; Uemura, T.; Matsuyama, H.; Tada, Y.; Yamazaki, K.; Soeda, T.; Miyajima, T.; Kataoka, Y. Origin analysis of thermal neutron soft error rate at nanometer scale. J. Vac. Sci. Technol. B 2015, 33, 020604. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, W.; Li, Y.; Li, Y.; He, C.; Wang, S.; Zhou, B.; Yu, Q.; He, H.; Xie, F.; et al. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Phys. Sin. 2019, 68, 238502. [Google Scholar] [CrossRef]
- Brookhaven National Laboratory; National Nuclear Data Center (NNDC); Evaluated Nuclear Data File (ENDF). Available online: https://www.nndc.bnl.gov/endf/ (accessed on 2 February 2023).
- Yang, W.; Li, Y.; Li, Y.; Hu, Z.; Xie, F.; He, C.; Wang, S.; Zhou, B.; He, H.; Khan, W.; et al. Atmospheric Neutron Single Event Effect Test on Xilinx 28nm System on Chip at CSNS-BL09. Microelectron. Reliab. 2019, 99, 119–124. [Google Scholar] [CrossRef]
- Chen, Y. China Spallation Neutron Source. Bull. Chin. Acad. Sci. 2011, 26, 726–729. [Google Scholar]
- Yu, Q.; Shen, F.; Yuan, L.; Lin, L.; Hu, Z.; Zhou, B.; Liang, T. Physical design of an Atmospheric Neutron Irradiation Spectrometer at China Spallation Neutron Source. Nucl. Eng. Des. 2022, 386, 111579. [Google Scholar] [CrossRef]
- Orban, J.; Fuzi, J.; Rosta, L. Development of area detectors for neutron beam instrumentation at the Budapest neutron centor, 2020, IAEA-TECDOC-1935, Modern Neutron Detection Proceedings of a Technical Meeting, Vienna, Austria. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1935_web.pdf (accessed on 1 February 2023).
- Hunt, S.; Iliadis, C.; Longland, R. Characterization of a 10B-doped liquid scintillator as a capture-gated neutron spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators. Spectrometers Detect. Assoc. Equip. 2016, 811, 108–114. [Google Scholar] [CrossRef]
- SRIM. Particle Interactions with Matter. 2013. Available online: http://www.srim.org/ (accessed on 4 March 2023).
- Yang, W.; Yin, Q.; Li, Y.; Guo, G.; Li, Y.H.; He, C.H.; Zhang, Y.W.; Zhang, F.Q.; Han, J.H. Single-event effects induced by medium-energy protons in 28 nm system-on-chip. Nucl. Sci. Technol. 2019, 30, 151. [Google Scholar] [CrossRef]
- Amrbar, M.; Irom, F.; Guertin, S.M.; Allen, G. Heavy ion single event effects measurements of Xilinx Zynq-7000 FPGA. In Proceedings of the IEEE Radiation Effects Data Workshop (REDW), Boston, MA, USA, 13–17 July 2015. [Google Scholar]
- Di Mascioa, S.; Menicuccia, A.; Furano, G.; Szewczyk, T.; Campajola, L.; Di Capua, F.; Lucaroni, A.; Ottavi, M. Towards defining a simplified procedure for COTS system-on-chip TID testing. Nucl. Eng. Technol. 2018, 50, 1298–1305. [Google Scholar] [CrossRef]
- Leroy, C.; Rancoita, P.G. Principles of Radiation Interaction in Matter and Detection, 2nd ed.; Word Scientific Publishing: Singapore, 2009. [Google Scholar]
- Uwe, S.; Hwang, C.S.; Funakubo, H. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Czernohorsky, M.; Seidel, K.; Kühnel, K.; Niess, J.; Sacher, N.; Kegel, W.; Lerch, W. High-K metal gate stacks with ultra-thin interfacial layers formed by low temperature microwave-based plasma oxidation. Microelectron. Eng. 2017, 178, 262–265. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Zhang, W.; Guo, Y.; Zhao, H.; Wei, J.; Li, Y.; He, C.; Chen, K.; Guo, G. Electron inducing soft errors in 28 nm system-on-Chip. Radiat. Eff. Defects Solids 2020, 175, 745–754. [Google Scholar] [CrossRef]
SBU | DCU | MCU | SEFI |
---|---|---|---|
13 | 2 | 2 | 2 |
Neutron Beam | Fluence 1010 cm−2 | SBU | Cross Section 10−10 cm2 | Bit Cross Section 10−15 cm2·bit−1 |
---|---|---|---|---|
CSNS-BL09 [27] | 2.22 | 21 | 9.46 ± 0.47 | 1.80 ± 0.09 |
CSNS-BL09 + 2 mm Cd | 2.47 | 13 | 5.26 ± 0.26 | 1.00 ± 0.05 |
Range in Silicon/µm | LET/MeV·cm2·mg−1 | ||||||
---|---|---|---|---|---|---|---|
7Li | α | 7Li | α | ||||
0.84 MeV | 1.01 MeV | 1.47 MeV | 1.78 MeV | 0.84 MeV | 1.01 MeV | 1.47 MeV | 1.78 MeV |
2.50 | 2.80 | 5 | 6.36 | 2.10 | 2.16 | 1.15 | 1.06 |
Upset Number | Bit Cross Section/cm2·bit−1 | Deposited Dose/rad | |||
---|---|---|---|---|---|
First Model | Second Model | First Model | Second Model | First Model | Second Model |
5 | 5 | 5 × 10−16 | 5 × 10−16 | 12.6 | 63.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Li, Y.; Li, Y.; Hu, Z.; Cai, J.; He, C.; Wang, B.; Wu, L. Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip. Electronics 2023, 12, 2057. https://doi.org/10.3390/electronics12092057
Yang W, Li Y, Li Y, Hu Z, Cai J, He C, Wang B, Wu L. Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip. Electronics. 2023; 12(9):2057. https://doi.org/10.3390/electronics12092057
Chicago/Turabian StyleYang, Weitao, Yonghong Li, Yang Li, Zhiliang Hu, Jiale Cai, Chaohui He, Bin Wang, and Longsheng Wu. 2023. "Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip" Electronics 12, no. 9: 2057. https://doi.org/10.3390/electronics12092057
APA StyleYang, W., Li, Y., Li, Y., Hu, Z., Cai, J., He, C., Wang, B., & Wu, L. (2023). Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip. Electronics, 12(9), 2057. https://doi.org/10.3390/electronics12092057