Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design
2.2. Device Fabrication
2.3. Temperature Coefficient of Resistance Measurements and Calibration
2.4. Thermal Characterization of the Substrates
2.5. Finite Element Analysis
3. Results and Discussion
3.1. Temperature Coefficient of Resistance Measurements
3.2. Static Temperature Measurements
3.3. Varied Pulse and Power Temperature Measurements
3.4. Finite Element Analysis Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van den Brand, J.; de Baets, J.; van Mol, T.; Dietzel, A. Systems-in-foil—Devices, fabrication processes and reliability issues. Microelectron. Reliab. 2008, 48, 1123–1128. [Google Scholar] [CrossRef]
- Advanced Packaging Market Size, Share, Growth, Trends, Statistics Analysis Report. Available online: https://datahorizzonresearch.com/advanced-packaging-market-2386, (accessed on 26 March 2024).
- Harmon, O.; Basler, T.; Björk, F.; Bodo. Advantages of the 1200 V SiC Schottky Diode with MPS Design. Available online: https://www.infineon.com/dgdl/Infineon-Article_Advantages_of_the_1200V_SiC_Schottky_Diode_with_MPS_Design-Article-v01_00-EN.pdf?fileId=5546d46250cc1fdf0151674981861d76 (accessed on 26 March 2024).
- Scarpa, V.; Kirchner, U.; Gerlach, R.; Kern, R. New SiC Thin-Wafer Technology Paving the Way of Schottky Diodes with Improved Performance and Reliability. Available online: https://www.infineon.com/dgdl/Infineon-New_Sic_Thin-Wafer_Technology_Paving_the_way_of_Schottky_Diodes_With_Improved_Performance_and_Reliability-Editorials-v01_00-EN.pdf?fileId=db3a304339dcf4b1013a03213f8d5912 (accessed on 26 March 2024).
- Damcevska, J.; Dimitrijev, S.; Haasmann, D.; Tanner, P. The effect of wafer thinning and thermal capacitance on chip temperature of SiC Schottky diodes during surge currents. Sci. Rep. 2023, 13, 19189. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, M.; Jia, X.; Jiang, W. Multilayer SIW Filter For Advanced Packaging Based On Glass Substrates. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Pathangey, B.; McCarthy, L.D.; Skilbred, D.C. Effect of metal contaminants in pre-gate oxide cleans for sub-100-nm devices. IEEE Trans. Device Mater. Reliab. 2005, 5, 631–638. [Google Scholar] [CrossRef]
- Qin, X.; Kumbhat, N.; Sundaram, V.; Tummala, R. Highly-reliable silicon and glass interposers-to-printed wiring board SMT interconnections: Modeling, design, fabrication and reliability. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1738–1745. [Google Scholar] [CrossRef]
- Lai, W.C.; Chuang, H.H.; Tsai, C.H.; Yeh, E.H.; Lin, C.H.; Peng, T.H.; Yen, L.J.; Liao, W.S.; Hung, J.N.; Sheu, C.C.; et al. 300mm size ultra-thin glass interposer technology and high-Q embedded helical inductor (EHI) for mobile application. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 13.4.1–13.4.4. [Google Scholar] [CrossRef]
- Shenoy, R.V.; Lai, K.-Y.; Gusev, E. 2.5D Advanced System-in-Package: Processes, Materials & Integration Aspects. ECS Trans. 2014, 61, 183–190. [Google Scholar] [CrossRef]
- Kim, J.; Shenoy, R.; Lai, K.; Kim, J. High-Q 3D RF solenoid inductors in glass. In Proceedings of the 2014 IEEE Radio Frequency Integrated Circuits Symposium, Tampa, FL, USA, 1–3 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 199–200. [Google Scholar] [CrossRef]
- Zweben, C. Advanced composites and other advanced materials for electronic packaging thermal management. In Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, Braselton, GA, USA, 11–14 March 2001; pp. 360–365. [Google Scholar] [CrossRef]
- MatWeb Material Property Data, Molybdenum, Mo. Available online: https://matweb.com/Search/MaterialGroupSearch.aspx?GroupID=184 (accessed on 26 March 2024).
- MatWeb Material Property Data, Silicon, Si. Available online: https://matweb.com/search/DataSheet.aspx?MatGUID=7d1b56e9e0c54ac5bb9cd433a0991e27&ckck=1 (accessed on 26 March 2024).
- Reiser, J.; Hoffmann, A.; Hain, J.; Jäntsch, U.; Klimenkov, M.; Hohe, J.; Mrotzek, T. Thermal management materials based on molybdenum (Mo) and copper (Cu): Elucidation of the rolling-induced evolution of thermo-physical properties (e.g., CTE). J. Alloys Compd. 2019, 776, 387–416. [Google Scholar] [CrossRef]
- Singh, M.; Asthana, R.; Shpargel, T.P. Brazing of carbon–carbon composites to Cu-clad molybdenum for thermal management applications. Mater. Sci. Eng. A 2007, 452–453, 699–704. [Google Scholar] [CrossRef]
- Elliott, J.W.; Lebon, M.T.; Robinson, A.J. Optimising integrated heat spreaders with distributed heat transfer coefficients: A case study for CPU cooling. Case Stud. Therm. Eng. 2022, 38, 102354. [Google Scholar] [CrossRef]
- Molybdenum, Mo, Stress Relieved. Available online: https://matweb.com/search/DataSheet.aspx?MatGUID=ac6761febc3a43c0817ce38f6f5f526c (accessed on 24 April 2024).
- Corning HPFS® 7980 Standard Grade High Purity Fused Silica. Available online: https://matweb.com/search/DataSheet.aspx?MatGUID=bce2ed06db914706b33234ed77479652&ckck=1 (accessed on 24 April 2024).
- Belser, R.B.; Hicklin, W.H. Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25° to 600 °C. J. Appl. Phys. 1959, 30, 313–322. [Google Scholar] [CrossRef]
- Meservey, R.; Tedrow, P.M. Properties of Very Thin Aluminum Films. J. Appl. Phys. 1971, 42, 51–53. [Google Scholar] [CrossRef]
- Gardner, J.W. Microsensors: Principles and Applications; Wiley: Chichester, UK, 1994. [Google Scholar]
- Kolar, M.; Mach, P. Relationships among properties of sputtered thin films and sputtering process parameters. In Proceedings of the 24th International Spring Seminar on Electronics Technology. Concurrent Engineering in Electronic Packaging. ISSE 2001. Conference Proceedings (Cat. No.01EX492), Calimanesti-Caciulata, Romania, 5–9 May 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 42–46. [Google Scholar] [CrossRef]
- Shin, W.C.; Besser, R.S. A micromachined thin-film gas flow sensor for microchemical reactors. J. Micromech. Microeng. 2006, 16, 731–741. [Google Scholar] [CrossRef]
- Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 1978, 11, 689–694. [Google Scholar] [CrossRef]
- Naghibi, S.; Kargar, F.; Wright, D.; Huang, C.Y.T.; Mohammadzadeh, A.; Barani, Z.; Salgado, R.; Balandin, A.A. Noncuring Graphene Thermal Interface Materials for Advanced Electronics. Adv. Electron. Mater. 2020, 6, 1901303. [Google Scholar] [CrossRef]
- Yan, L.; Liu, P.; Xu, P.; Tan, L.; Zhang, Z. Reliability Analysis of Flip-Chip Packaging GaN Chip with Nano-Silver Solder BUMP. Micromachines 2023, 14, 1245. [Google Scholar] [CrossRef] [PubMed]
- Movaghgharnezhad, S.; Darabi, J. Advanced Micro-/Nanostructured Wicks for Passive Phase-Change Cooling Systems. Nanoscale Microscale Thermophys. Eng. 2021, 25, 116–135. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, W.; Carey, T.; Wen, B.; He, D.; Arbab, A.; Groombridge, A.; Smail, F.; de La Verpilliere, J.; Yao, C.; et al. Enhanced composite thermal conductivity by percolated networks of in-situ confined-grown carbon nanotubes. Nano Res. 2023, 16, 12821–12829. [Google Scholar] [CrossRef]
- Tong, X.C. Thermal Management Fundamentals and Design Guides in Electronic Packaging; Springer: New York, NY, USA, 2011; pp. 1–58. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, W.; Yu, H.; Luo, Y.; Li, T.; Jin, Y.; Zhang, H.; Li, Z. A parylene-filled-trench technique for thermal isolation in silicon-based microdevices. J. Micromech. Microeng. 2009, 19, 035013. [Google Scholar] [CrossRef]
Material | Density (kg m−3) | Specific Heat Capacity (J kg−1 K−1) | Thermal Conductivity (W m−1 K−1) |
---|---|---|---|
Molybdenum [18] | 1.020 × 104 | 250 | 138 |
Silicon [14] | 2.329 × 103 | 700 | 130 |
Fused silica glass [19] | 2.203 × 103 | 703 | 1.38 |
Substrate | Power (W) | ||
---|---|---|---|
1 W | 2 W | 2.7 W | |
Molybdenum | 36.7 °C | 38.6 °C | 40.3 °C |
Silicon | 37.1 °C | 39.1 °C | 40.9 °C |
Fused silica glass | 82.8 °C | 136.0 °C | 166.0 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-J.; Kiebala, T.; Suflita, P.; Moore, C.; Housser, G.; McMahon, S.; Puchades, I. Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration. Electronics 2024, 13, 1818. https://doi.org/10.3390/electronics13101818
Huang T-J, Kiebala T, Suflita P, Moore C, Housser G, McMahon S, Puchades I. Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration. Electronics. 2024; 13(10):1818. https://doi.org/10.3390/electronics13101818
Chicago/Turabian StyleHuang, Tzu-Jung, Tobias Kiebala, Paul Suflita, Chad Moore, Graeme Housser, Shane McMahon, and Ivan Puchades. 2024. "Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration" Electronics 13, no. 10: 1818. https://doi.org/10.3390/electronics13101818
APA StyleHuang, T. -J., Kiebala, T., Suflita, P., Moore, C., Housser, G., McMahon, S., & Puchades, I. (2024). Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration. Electronics, 13(10), 1818. https://doi.org/10.3390/electronics13101818