Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring
Abstract
:1. Introduction
2. Related Work
2.1. Simplified Screening
2.2. Comprehensive Test Stimuli
2.3. Dedicated Equipment
2.4. This Work
3. Proposed Instrumentation
3.1. Test Setup and Instrumentation
3.2. Test Execution and Monitoring
3.3. Measurements and Reporting
4. Data Analysis
4.1. SEE Cross Sections
4.2. SEL Current and LET Correlation
4.3. SEL and SEFI Correlation
4.4. SEFI Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stassinopoulos, E.; Raymond, J. The space radiation environment for electronics. Proc. IEEE 1988, 76, 1423–1442. [Google Scholar] [CrossRef]
- Bourdarie, S.; Xapsos, M. The Near-Earth Space Radiation Environment. IEEE Trans. Nucl. Sci. 2008, 55, 1810–1832. [Google Scholar] [CrossRef]
- Yang, M.; Hua, G.; Feng, Y.; Gong, J. Fault-Tolerance Techniques for Spacecraft Control Computers, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Bruguier, G.; Palau, J.M. Single particle-induced latchup. IEEE Trans. Nucl. Sci. 1996, 43, 522–532. [Google Scholar] [CrossRef]
- Schrimpf, R.D.; Fleetwood, D.M. Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices; World Scientific: Singapore, 2004; Volume 34. [Google Scholar] [CrossRef]
- Rajkowski, T.; Saigné, F.; Wang, P.X. Radiation Qualification by Means of the System-Level Testing: Opportunities and Limitations. Electronics 2022, 11, 378. [Google Scholar] [CrossRef]
- Quinn, H. Challenges in Testing Complex Systems. IEEE Trans. Nucl. Sci. 2014, 61, 766–786. [Google Scholar] [CrossRef]
- García Alía, R.; Brugger, M.; Daly, E.; Danzeca, S.; Ferlet-Cavrois, V.; Gaillard, R.; Mekki, J.; Poivey, C.; Zadeh, A. Simplified SEE Sensitivity Screening for COTS Components in Space. IEEE Trans. Nucl. Sci. 2017, 64, 882–890. [Google Scholar] [CrossRef]
- Bezerra, F.; Dangla, D.; Manni, F.; Mekki, J.; Standarovski, D.; Alia, R.G.; Brugger, M.; Danzeca, S. Evaluation of an Alternative Low Cost Approach for SEE Assessment of a SoC. In Proceedings of the 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Geneva, Switzerland, 2–6 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F. Soft errors in commercial off-the-shelf static random access memories. Semicond. Sci. Technol. 2016, 32, 013006. [Google Scholar] [CrossRef]
- Secondo, R.; Alía, R.G.; Peronnard, P.; Brugger, M.; Masi, A.; Danzeca, S.; Merlenghi, A.; Vaillé, J.R.; Dusseau, L. Analysis of SEL on Commercial SRAM Memories and Mixed-Field Characterization of a Latchup Detection Circuit for LEO Space Applications. IEEE Trans. Nucl. Sci. 2017, 64, 2107–2114. [Google Scholar] [CrossRef]
- Samsung. K6R4016V1D Datasheet. 256K x 16 Bit High-Speed CMOS Static RAM, Rev. 1.0. 2002. Available online: https://www.farnell.com/datasheets/10596.pdf (accessed on 30 April 2024).
- Francois, M.; Santandrea, S.; Mellab, K.; Vrancken, D.; Versluys, J. The PROBA-V mission: The space segment. Int. J. Remote Sens. 2014, 35, 2548–2564. [Google Scholar] [CrossRef]
- Mattos, A.M.P.; Santos, D.A.; Luza, L.M.; Gupta, V.; Borel, T.; Dilillo, L. Investigation on Radiation-Induced Latch-Ups in COTS SRAM Memories On-Board PROBA-V. IEEE Trans. Nucl. Sci. 2024, 1–9. [Google Scholar] [CrossRef]
- Page, T.; Benedetto, J. Extreme latchup susceptibility in modern commercial-off-the-shelf (COTS) monolithic 1M and 4M CMOS static random-access memory (SRAM) devices. In Proceedings of the 2005 IEEE Radiation Effects Data Workshop, Seattle, WA, USA, 11–15 July 2005; pp. 1–7. [Google Scholar] [CrossRef]
- Heidecker, J.; Allen, G.; Sheldon, D. Single Event Latchup (SEL) and Total Ionizing Dose (TID) of a 1 Mbit Magnetoresistive Random Access Memory (MRAM). In Proceedings of the 2010 IEEE Radiation Effects Data Workshop, Denver, CO, USA, 20–23 July 2010; p. 4. [Google Scholar] [CrossRef]
- Söderström, D.; Luza, L.M.; de Mattos, A.M.P.; Gil, T.; Kettunen, H.; Niskanen, K.; Javanainen, A.; Dilillo, L. Technology Dependence of Stuck Bits and Single-Event Upsets in 110-, 72-, and 63-nm SDRAMs. IEEE Trans. Nucl. Sci. 2023, 70, 1861–1869. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Baeg, S. Fault Coverage Re-Evaluation of Memory Test Algorithms With Physical Memory Characteristics. IEEE Access 2021, 9, 124632–124639. [Google Scholar] [CrossRef]
- Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Todri, A.; Virazel, A.; Touboul, A.D.; Wrobel, F.; Saigné, F. Evaluation of test algorithms stress effect on SRAMs under neutron radiation. In Proceedings of the 2012 IEEE 18th International On-Line Testing Symposium (IOLTS), Sitges, Spain, 27–29 June 2012; pp. 121–122. [Google Scholar] [CrossRef]
- Kerboub, N.; Alia, R.G.; Mekki, J.; Bezerra, F.; Monteuuis, A.; Fernández-Martinez, P.; Danzeca, S.; Brugger, M.; Standarovski, D.; Rauch, J. Comparison Between In-flight SEL Measurement and Ground Estimation Using Different Facilities. IEEE Trans. Nucl. Sci. 2019, 66, 1541–1547. [Google Scholar] [CrossRef]
- Harboe-Sorensen, R.; Poivey, C.; Guerre, F.X.; Roseng, A.; Lochon, F.; Berger, G.; Hajdas, W.; Virtanen, A.; Kettunen, H.; Duzellier, S. From the Reference SEU Monitor to the Technology Demonstration Module On-Board PROBA-II. IEEE Trans. Nucl. Sci. 2008, 55, 3082–3087. [Google Scholar] [CrossRef]
- Microsemi. WP0203 White Paper. Single Event Effects–A Comparison of Configuration Upsets and Data Upsets, Rev. 1. 2015. Available online: https://www.microchip.com/content/dam/mchp/documents/FPGA/ProductDocuments/SupportingCollateral/SEE-%20A%20Comparison%20of%20Configuration%20Upsets%20and%20Data%20Upsets.pdf (accessed on 30 April 2024).
Cross Section 1,2 | LET [MeV·cm2/mg] | Weibull Fitting | |||||||
---|---|---|---|---|---|---|---|---|---|
1.5 | 7.2 | 13.3 | 24.5 | 48.5 | |||||
[cm2/bit] | |||||||||
[cm2/device] | |||||||||
[cm2/device] | - | - | - | - | - | - |
Parameters | Value | Observations |
---|---|---|
Current resolution | 25 A | - |
Threshold current | up to 725 mA | Configurable in real-time |
Timing resolution | 80 ns | Current and memory errors synchronization |
Current conversion | 140 s | Analog to digital conversion |
Current sampling | 220 s | - |
Response time 1 | 1.1 ms to 1.25 ms | From high current to SEL detection |
Test modes | - | Standby, chip-enabled, static, and dynamic 2 |
Power monitoring | - | Main supply and IO banks monitored |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattos, A.M.P.; Santos, D.A.; Luza, L.M.; Gupta, V.; Dilillo, L. Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring. Electronics 2024, 13, 1822. https://doi.org/10.3390/electronics13101822
Mattos AMP, Santos DA, Luza LM, Gupta V, Dilillo L. Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring. Electronics. 2024; 13(10):1822. https://doi.org/10.3390/electronics13101822
Chicago/Turabian StyleMattos, André M. P., Douglas A. Santos, Lucas M. Luza, Viyas Gupta, and Luigi Dilillo. 2024. "Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring" Electronics 13, no. 10: 1822. https://doi.org/10.3390/electronics13101822
APA StyleMattos, A. M. P., Santos, D. A., Luza, L. M., Gupta, V., & Dilillo, L. (2024). Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring. Electronics, 13(10), 1822. https://doi.org/10.3390/electronics13101822