Characterization of Single-Event Effects in a Microcontroller with an Artificial Neural Network Accelerator
Abstract
:1. Introduction
2. Background
2.1. Artificial Neural Networks
2.2. Neural Networks in Radiation Environments
3. Related Work
4. Experimental Evaluation
4.1. Device Under Test
4.2. Layer-by-Layer Implementation
4.3. Neural Networks and Datasets
4.4. Test Setup
4.5. Metrics
5. Results
- No impact (NI): Executions where the corrupted data were either unused or did not affect the circuit’s functionality, resulting in no observable change in the program output.
- Major output disturbance (MaOD): The execution finished, but the classification result was entirely incorrect.
- Medium output disturbance (MeOD): The execution finished, but the confidence level or percentage of the classification was incorrect, even though the predicted class itself was still correct.
- Minor output disturbance (MiOD): The execution finished, but the error caused a slight disturbance in the output of the last layer. Despite this, the final classification remained unaffected.
- System failure (SF): When the error led to the program to stop prematurely or caused the entire system to crash.
5.1. Major, Medium, and Minor Output Disturbance
- Stuck output values: There were cases of stuck output values where the values from the last layer of the NN unloaded from the accelerator remained the same over a sequence of images, despite the images being different. The intermediate layer values varied in some instances, indicating that the error occurred only at the final output. In other cases, the intermediate and final output values were identical, likely indicating that an error occurred during image loading. In a few cases, no errors were detected in the intermediate layers, probably caused by an event on the controller of the accelerator.
- Sequential misclassifications: One type of pattern involves sequential misclassifications of the same image with similar output values. The same image was misclassified multiple times in sequence in a few instances. While the classification was wrong each time, the output values varied slightly but remained similar. Since, in these cases, the error occurred for only one image (and not for the others from the same class), it is most likely that the issue lies in the variable that stores the memory pointer to the image, which results in loading the wrong values for the input memory and thus an incorrect classification.
- Multiple misclassifications in sequence: Finally, there was one scenario where several images were misclassified in sequence. Each one had different output values and class predictions. However, there was no report of wrong output between the layers, and only a few weight errors were reported. This was also probably caused by an event on the controller of the accelerator.
5.2. System Failure
5.3. Reliability Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions. IEEE Access 2024, 12, 101603–101625. [Google Scholar] [CrossRef]
- Bitkina, O.; Park, J.; Kim, H. Application of artificial intelligence in medical technologies: A systematic review of main trends. Digital Health 2023, 9, 20552076231189331. [Google Scholar] [CrossRef] [PubMed]
- Bello, H. Towards certifiable AI in aviation: Landscape, challenges, and opportunities. arXiv 2024, arXiv:2409.08666. Available online: http://xxx.lanl.gov/abs/2409.08666 (accessed on 16 September 2024).
- Surianarayanan, C.; Lawrence, J.J.; Chelliah, P.R.; Prakash, E.; Hewage, C. A Survey on Optimization Techniques for Edge Artificial Intelligence (AI). Sensors 2023, 23, 1279. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liewig, M. A Survey of AI Accelerators for Edge Environment. In Proceedings of the Trends and Innovations in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 35–44. [Google Scholar]
- Bui, T.A.; Lee, P.J.; Liang, C.S.; Hsu, P.H.; Shiu, S.H.; Tsai, C.K. Edge-computing-enabled deep learning approach for low-light satellite image enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4071–4083. [Google Scholar] [CrossRef]
- Kyrkou, C.; Plastiras, G.; Theocharides, T.; Venieris, S.I.; Bouganis, C.S. DroNet: Efficient convolutional neural network detector for real-time UAV applications. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 967–972. [Google Scholar] [CrossRef]
- Guan, X.; Lou, S.; Li, H.; Tang, T. Intelligent control of quad-rotor aircrafts with a STM32 microcontroller using deep neural networks. Ind. Robot. Int. J. Robot. Res. Appl. 2021, 48, 700–709. [Google Scholar] [CrossRef]
- Boudenot, J.C. Radiation space environment. In Radiation Effects on Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–9. [Google Scholar]
- Cannon, P.; Angling, M.; Barclay, L. Chapter 7 and 9—Radiation impacts on satellites and Ionising radiation impacts on avionics and ground systems. In Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy of Engineering: London, UK, 2013. [Google Scholar]
- Barth, J.L.; Dyer, C.; Stassinopoulos, E. Space, atmospheric, and terrestrial radiation environments. IEEE Trans. Nucl. Sci. 2003, 50, 466–482. [Google Scholar] [CrossRef]
- Normand, E. Single event upset at ground level. IEEE Trans. Nucl. Sci. 1996, 43, 2742–2750. [Google Scholar] [CrossRef]
- Jedec, J. Measurement and reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices: JESD89A. JEDEC Stand. JEDEC Sold State Technol. Assoc. 2006, 89, 1–85. [Google Scholar]
- Yang, M.; Hua, G.; Feng, Y.; Gong, J. Fault-Tolerance Techniques for Spacecraft Control Computers; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sorin, D. Fault Tolerant Computer Architecture; Morgan & Claypool Publishers: Williston, VT, USA, 2009. [Google Scholar]
- Bruguier, G.; Palau, J.M. Single particle-induced latchup. IEEE Trans. Nucl. Sci. 1996, 43, 522–532. [Google Scholar] [CrossRef]
- Koga, R.; Penzin, S.; Crawford, K.; Crain, W. Single event functional interrupt (SEFI) sensitivity in microcircuits. In Proceedings of the RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No. 97TH8294), Cannes, France, 15–19 September 1997; IEEE: Piscataway Township, NJ, USA, 1997; pp. 311–318. [Google Scholar]
- Ibrahim, Y.; Wang, H.; Liu, J.; Wei, J.; Chen, L.; Rech, P.; Adam, K.; Guo, G. Soft errors in DNN accelerators: A comprehensive review. Microelectron. Reliab. 2020, 115, 113969. [Google Scholar] [CrossRef]
- Gutiérrez-Zaballa, J.; Basterretxea, K.; Echanobe, J. Evaluating single event upsets in deep neural networks for semantic segmentation: An embedded system perspective. J. Syst. Archit. 2024, 154, 103242. [Google Scholar] [CrossRef]
- Santos, F.F.d.; Pimenta, P.F.; Lunardi, C.; Draghetti, L.; Carro, L.; Kaeli, D.; Rech, P. Analyzing and Increasing the Reliability of Convolutional Neural Networks on GPUs. IEEE Trans. Reliab. 2019, 68, 663–677. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Alippi, C.; Piuri, V.; Sami, M. Sensitivity to errors in artificial neural networks: A behavioral approach. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1995, 42, 358–361. [Google Scholar] [CrossRef]
- Piuri, V. Analysis of Fault Tolerance in Artificial Neural Networks. J. Parallel Distrib. Comput. 2001, 61, 18–48. [Google Scholar] [CrossRef]
- Furano, G.; Meoni, G.; Dunne, A.; Moloney, D.; Ferlet-Cavrois, V.; Tavoularis, A.; Byrne, J.; Buckley, L.; Psarakis, M.; Voss, K.O.; et al. Towards the Use of Artificial Intelligence on the Edge in Space Systems: Challenges and Opportunities. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 44–56. [Google Scholar] [CrossRef]
- Ahmadilivani, M.H.; Taheri, M.; Raik, J.; Daneshtalab, M.; Jenihhin, M. A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks. ACM Comput. Surv. 2024, 56, 1–39. [Google Scholar] [CrossRef]
- Benevenuti, F.; Libano, F.; Pouget, V.; Kastensmidt, F.L.; Rech, P. Comparative Analysis of Inference Errors in a Neural Network Implemented in SRAM-Based FPGA Induced by Neutron Irradiation and Fault Injection Methods. In Proceedings of the 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI), Bento Goncalves, Brazil, 27–31 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Libano, F.; Wilson, B.; Wirthlin, M.; Rech, P.; Brunhaver, J. Understanding the impact of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nucl. Sci. 2020, 67, 1478–1484. [Google Scholar] [CrossRef]
- Dos Santos, F.F.; Kritikakou, A.; Condia, J.E.R.; Guerrero-Balaguera, J.D.; Reorda, M.S.; Sentieys, O.; Rech, P. Characterizing a neutron-induced fault model for deep neural networks. IEEE Trans. Nucl. Sci. 2022, 70, 370–380. [Google Scholar] [CrossRef]
- Blower, S.; Rech, P.; Cazzaniga, C.; Kastriotou, M.; Frost, C.D. Evaluating and Mitigating Neutrons Effects on COTS EdgeAI Accelerators. IEEE Trans. Nucl. Sci. 2021, 68, 1719–1726. [Google Scholar] [CrossRef]
- Lin, W.; Adetomi, A.; Arslan, T. Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions. Electronics 2021, 10, 2048. [Google Scholar] [CrossRef]
- Clay, M.; Grecos, C.; Shirvaikar, M.; Richey, B. Benchmarking the MAX78000 artificial intelligence microcontroller for deep learning applications. In Proceedings of the Real-Time Image Processing and Deep Learning 2022, Orlando, FL, USA, 3–7 April 2022; Kehtarnavaz, N., Carlsohn, M.F., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2022; Volume 12102, p. 1210207. [Google Scholar] [CrossRef]
- Moss, A.; Lee, H.; Xun, L.; Min, C.; Kawsar, F.; Montanari, A. Ultra-Low Power DNN Accelerators for IoT: Resource Characterization of the MAX78000. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, New York, NY, USA, 6–9 November 2023; pp. 934–940. [Google Scholar] [CrossRef]
- Nardello, M.; Caronti, L.; Brunelli, D. Intermittent Intelligent Camera with LEO sensor-to-satellite Connectivity. In Proceedings of the 11th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems, Istanbul, Turkiye, 12 November 2023; pp. 79–85. [Google Scholar]
- Cazzaniga, C.; Frost, C.D. Progress of the scientific commissioning of a fast neutron beamline for chip irradiation. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1021, p. 012037. [Google Scholar]
- Integrated, M. Maxim Integrated AI Development. 2023. Available online: https://github.com/MaximIntegratedAI (accessed on 9 September 2024).
- Caronti, L.; Akhunov, K.; Nardello, M.; Yıldırım, K.S.; Brunelli, D. Fine-grained hardware acceleration for efficient batteryless intermittent inference on the edge. ACM Trans. Embed. Comput. Syst. 2023, 22, 1–19. [Google Scholar] [CrossRef]
- Peterson, W.W.; Brown, D.T. Cyclic Codes for Error Detection. Proc. IRE 1961, 49, 228–235. [Google Scholar] [CrossRef]
- Castagnoli, G.; Brauer, S.; Herrmann, M. Optimization of cyclic redundancy-check codes with 24 and 32 parity bits. IEEE Trans. Commun. 1993, 41, 883–892. [Google Scholar] [CrossRef]
- Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 5 September 2024).
- Amarnath, C.; Mejri, M.; Ma, K.; Chatterjee, A. Error Resilience in Deep Neural Networks Using Neuron Gradient Statistics. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2024, 43, 1149–1162. [Google Scholar] [CrossRef]
- Luza, L.M.; Ruospo, A.; Söderström, D.; Cazzaniga, C.; Kastriotou, M.; Sanchez, E.; Bosio, A.; Dilillo, L. Emulating the effects of radiation-induced soft-errors for the reliability assessment of neural networks. IEEE Trans. Emerg. Top. Comput. 2021, 10, 1867–1882. [Google Scholar] [CrossRef]
- Libano, F.; Rech, P.; Neuman, B.; Leavitt, J.; Wirthlin, M.; Brunhaver, J. How reduced data precision and degree of parallelism impact the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nucl. Sci. 2021, 68, 865–872. [Google Scholar] [CrossRef]
Dataset | Num. of Layers | Weights [Bytes] | Bias [Bytes] | Num. of Operations | Inference Time (µs) | |
---|---|---|---|---|---|---|
Standard | Layer-by-Layer | |||||
CIFAR-10 | 11 | 301,760 | 842 | 36,484,536 | 4872 | 5541 |
MNIST | 5 | 71,148 | 10 | 10,883,968 | 1486 | 1676 |
Board | Number of Images | Images with Errors | MaOD | MeOD | MiOD | NI | SF |
---|---|---|---|---|---|---|---|
#B1 | 134,783 | 130,140 | 775 | 44,161 | 82,698 | 2506 | 167 |
#B2 | 131,416 | 127,031 | 686 | 44,134 | 79,839 | 2372 | 220 |
#B3 | 169,927 | 124,357 | 9 | 27 | 14,764 | 109,557 | 171 |
#B4 | 203,574 | 136,881 | 86 | 9 | 18,123 | 118,663 | 218 |
Board | Weight | Weight and Config. | Weight and Bias | All | Unknown |
---|---|---|---|---|---|
#B1 | 80,391 | 10 | 0 | 1 | 9 |
#B2 | 78,088 | 5 | 1 | 0 | 6 |
#B3 | 14,752 | 0 | 0 | 0 | 12 |
#B4 | 18,088 | 3 | 0 | 0 | 32 |
Board | Weight | Config. | Weight and Config. | Weight and Bias | All | Unknown |
---|---|---|---|---|---|---|
#B1 | 42,365 | 1 | 6 | 1 | 1 | 4 |
#B2 | 42,952 | 0 | 3 | 0 | 1 | 4 |
#B3 | 27 | 0 | 0 | 0 | 0 | 0 |
#B4 | 9 | 0 | 0 | 0 | 0 | 0 |
Board | Weight | Config. | Weight and Config. |
---|---|---|---|
#B1 | 763 | 7 | 3 |
#B2 | 573 | 0 | 1 |
#B3 | 8 | 0 | 1 |
#B4 | 85 | 0 | 1 |
Board | Hard Fault | WDT Reset | Unrecognized Reset | Overcurrent | Hang |
---|---|---|---|---|---|
#B1 | 55 | 15 | 44 | 5 | 30 |
#B2 | 55 | 28 | 47 | 17 | 36 |
#B3 | 41 | 21 | 56 | 3 | 28 |
#B4 | 63 | 32 | 49 | 3 | 51 |
Board | Fluence [n/cm2] | XS [cm2/Device] | ||||
---|---|---|---|---|---|---|
Hard Fault | WDT Reset | Unrecognized Reset | Overcurrent | Hang | ||
#B1 | ||||||
#B2 | ||||||
#B3 | ||||||
#B4 |
Board | Fluence [n/cm2] | Weight Errors | XS [cm2/Device] | Num. of Weights | XS [cm2/Weight] | FIT | Normalized FIT |
---|---|---|---|---|---|---|---|
#B1 | 14,318 | 301,760 | 197.30 | ||||
#B2 | 14,258 | 301,760 | 233.73 | ||||
#B3 | 3368 | 71,148 | 49.94 | ||||
#B4 | 4232 | 71,148 | 56.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imianosky, C.; Mattos, A.M.P.; Santos, D.A.; Melo, D.R.; Kastriotou, M.; Cazzaniga, C.; Dilillo, L. Characterization of Single-Event Effects in a Microcontroller with an Artificial Neural Network Accelerator. Electronics 2024, 13, 4461. https://doi.org/10.3390/electronics13224461
Imianosky C, Mattos AMP, Santos DA, Melo DR, Kastriotou M, Cazzaniga C, Dilillo L. Characterization of Single-Event Effects in a Microcontroller with an Artificial Neural Network Accelerator. Electronics. 2024; 13(22):4461. https://doi.org/10.3390/electronics13224461
Chicago/Turabian StyleImianosky, Carolina, André M. P. Mattos, Douglas A. Santos, Douglas R. Melo, Maria Kastriotou, Carlo Cazzaniga, and Luigi Dilillo. 2024. "Characterization of Single-Event Effects in a Microcontroller with an Artificial Neural Network Accelerator" Electronics 13, no. 22: 4461. https://doi.org/10.3390/electronics13224461
APA StyleImianosky, C., Mattos, A. M. P., Santos, D. A., Melo, D. R., Kastriotou, M., Cazzaniga, C., & Dilillo, L. (2024). Characterization of Single-Event Effects in a Microcontroller with an Artificial Neural Network Accelerator. Electronics, 13(22), 4461. https://doi.org/10.3390/electronics13224461