Interleaved High Voltage Gain DC-DC Converter with Winding-Cross-Coupled Inductors and Voltage Multiplier Cells for Photovoltaic Systems
Abstract
:1. Introduction
- (1)
- The high voltage gain can be achieved without working at an extreme duty ratio;
- (2)
- The voltage stresses on the semiconductor devices are low such that the low-voltage-rated MOSFETs with low on-resistance Rds(on) and diodes with low forward voltage drop can be selected to reduce the conduction losses;
- (3)
- The input current ripple is reduced by the interleaved operation;
- (4)
- The diode reverse-recovery problem is alleviated due to the leakage inductances of the coupled inductors;
- (5)
- The leakage energy of the coupled inductors is recycled such that the voltage spikes are avoided during the switch turned-off transient.
2. Converter Configuration and Operation Principles
3. Steady-State Analysis
3.1. Voltage Gain Derivation
3.2. Voltage Stresses on Semiconductors
3.3. Performance Comparison
4. Converter Design Guidelines
4.1. WCCIs Turns Ratio Design
4.2. Magnetizing Inductance Design
4.3. Capacitor Design
5. Closed-Loop Controller Design
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wai, R.J.; Wang, W.H. Grid-connected photovoltaic generation system. IEEE Trans. Circuits Syst. 2008, 55, 953–964. [Google Scholar]
- Zhang, L.; Sun, K.; Xing, Y.; Feng, L.; Ge, H. A modular grid-connected photovoltaic generation system based on DC bus. IEEE Trans. Power Electron. 2011, 26, 523–531. [Google Scholar] [CrossRef]
- Kothapalli, K.R.; Ramteke, M.R.; Suryawanshi, H.M.; Reddi, N.K.; Kalahasthi, R.B. A coupled inductor based high step-up converter for dc microgrid applications. IEEE Trans. Ind. Electron. 2021, 68, 4927–4940. [Google Scholar] [CrossRef]
- Jarin, T.; Akkara, S.; Mole, S.S.S.; Manivannan, A.; Selvakumar, A.I. Fuel vehicle improvement using high voltage gain in DC-DC boost converter. Renew. Energy Focus. 2022, 43, 228–238. [Google Scholar] [CrossRef]
- Tofoli, F.L.; Pereira, D.C.; Paula, W.J.; Junior, D.S.O. Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter. IET Power Electron. 2015, 8, 2044–2057. [Google Scholar] [CrossRef]
- Guan, Y.; Cecati, C.; Alonso, J.M.; Zhang, Z. Review of high-frequency high-voltage-conversion-ratio DC-DC converters. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 374–389. [Google Scholar] [CrossRef]
- Alkhaldi, A.; Elkhateb, A.; Laverty, D. Voltage lifting techniques for non-isolated DC/DC converters. Electronics 2023, 12, 718. [Google Scholar] [CrossRef]
- Liu, H.; Hu, H.; Wu, H.; Xing, Y.; Batarseh, I. Overview of high-step-up coupled-inductor boost converters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 689–704. [Google Scholar] [CrossRef]
- Yao, T.; Cheng, Y.; Guan, Y.; Wang, W.; Wang, Y.; Xu, D. A family of high step-up DC–DC converters based on enhanced boost cells with coupled inductor. IEEE Trans. Power Electron. 2023, 38, 12932–12945. [Google Scholar] [CrossRef]
- Azizkandi, M.E.; Sedaghati, F.; Shayeghi, H.; Blaabjerg, F. Two- and three-winding coupled-inductor based high step-up DC-DC converters for sustainable energy applications. IET Power Electron. 2020, 13, 144–156. [Google Scholar] [CrossRef]
- Jin, T.; Yan, X.; Li, H.; Lin, J.; Weng, Y.; Zhang, Y. A new three-winding coupled inductor high step-up DC–DC converter integrating with switched-capacitor technique. IEEE Trans. Power Electron. 2023, 38, 14236–14248. [Google Scholar] [CrossRef]
- Algamluoli, A.F.; Wu, X. A new single-cell hybrid inductor-capacitor DC-DC converter for ultra-high voltage gain in renewable energy applications. Electronics 2023, 12, 3101. [Google Scholar] [CrossRef]
- Andrade, J.M.D.; Coelho, R.F.; Lazzarin, T.B. High step-up dc–dc converter based on modified active switched-inductor and switched-capacitor cells. IET Power Electron. 2020, 13, 3127–3137. [Google Scholar] [CrossRef]
- Luo, P.; Liang, T.J.; Chen, K.H.; Chen, S.M. Design and implementation of a high step-up DC-DC converter with active switched inductor and coupled inductor. IEEE Trans. Ind. Appl. 2023, 59, 3470–3480. [Google Scholar] [CrossRef]
- Nouri, T.; Nouri, N.; Vosoughi, N. A novel high step-up high efficiency interleaved DC-DC converter with coupled inductor and built-in transformer for renewable energy systems. IEEE Trans. Ind. Electron. 2020, 67, 6505–6516. [Google Scholar] [CrossRef]
- Nouri, T.; Kurdkandi, N.V.; Shaneh, M. A novel interleaved high step-up converter with built-in transformer voltage multiplier cell. IEEE Trans. Ind. Electron. 2021, 68, 4988–4999. [Google Scholar] [CrossRef]
- Nouri, T.; Kurdkandi, N.V.; Shaneh, M. A Novel ZVS High-step-up converter with built-in transformer voltage multiplier cell. IEEE Trans. Power Electron. 2020, 35, 12871–12886. [Google Scholar] [CrossRef]
- Lei, H.; Hao, R.; You, X.; Li, F. Nonisolated high step-up soft-switching DC–DC converter with interleaving and Dickson switched-capacitor techniques. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2007–2021. [Google Scholar] [CrossRef]
- Semiromizadeh, J.; Adib, E.; Izadi, H. A ZVS High step-up DC–DC converter for renewable energy systems with simple gate drive requirements. IEEE Trans. Ind. Electron. 2022, 69, 11253–11261. [Google Scholar] [CrossRef]
- Nouri, T.; Shaneh, M.; Benbouzid, M.; Kurdkandi, N.V. An interleaved ZVS high step-up converter for renewable energy systems applications. IEEE Trans. Ind. Electron. 2022, 69, 4786–4800. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Wu, J.; He, X. Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells. IEEE Trans. Power Electron. 2012, 27, 133–143. [Google Scholar] [CrossRef]
- Nouri, T.; Hosseini, S.H.; Babaei, E.; Ebrahimi, J. Interleaved high step-up DC–DC converter based on three-winding high-frequency coupled inductor and voltage multiplier cell. IET Power Electron. 2015, 8, 175–189. [Google Scholar] [CrossRef]
- He, L.; Liao, Y. An advanced current-autobalance high step-up converter with a multicoupled inductor and voltage multiplier for a renewable power generation system. IEEE Trans. Power Electron. 2016, 31, 6992–7005. [Google Scholar]
- He, L.; Lin, Z.; Tan, Q.; Lu, F.; Zeng, T. Interleaved high step-up current sharing converter with coupled inductors. Electronics 2021, 10, 436. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, X.; Gao, Y.; Xu, R.; Wang, J.; Wang, Y.; Liu, J. Fixed-time sliding mode control for DC/DC buck converters with mismatched uncertainties. IEEE Trans. Circuits Syst. I 2023, 70, 472–480. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Q.; Wang, H. Generalized disturbance estimation based continuous integral terminal sliding mode control for magnetic levitation systems. IEEE Trans. Autom. Sci. Eng. 2024. early access. [Google Scholar] [CrossRef]
- Alejandro, G.R.; Sebastián, R.; Catalina, G.C.; Carlos, R. Model predictive control with stability guarantee for second-order DC/DC converters. IEEE Trans. Ind. Electron. 2024, 71, 5157–5165. [Google Scholar]
- Yau, Y.T.; Hwu, K.I.; Wang, C.W.; Shieh, J.J. Zeta dual-loop control based on voltage across transferring capacitor sensed. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 25–28 November 2019; pp. 1–3. [Google Scholar]
- Venable, D. The K factor: A new mathematical tool for stability analysis and synthesis. Proc. Powercon. 1983, 10, 1–10. [Google Scholar]
- Rahman, S.M.; Moghassemi, A.; Arsalan, A.; Timilsina, L.; Chamarthi, P.K.; Papari, B.; Ozkan, G.; Edrington, C.S. Emerging trends and challenges in thermal management of power electronic converters: A state of the art review. IEEE Access 2024, 12, 2169–3536. [Google Scholar] [CrossRef]
- Jong, E.C.W.; Ferreira, J.A.; Bauer, P. Design techniques for thermal management in switch mode converters. IEEE Trans. Ind. Appl. 2006, 42, 1375–1386. [Google Scholar] [CrossRef]
- Laloya, E.; Lucia, O.; Sarnago, H.; Burdio, J.M. Heat management in power converters: From state of the art to future ultrahigh efficiency systems. IEEE Trans. Power Electron. 2016, 31, 7896–7908. [Google Scholar] [CrossRef]
High Voltage Gain Converter | Converter in [21] | Converter in [22] | Converter in [23] | Converter in [24] | Proposed Converter |
---|---|---|---|---|---|
Voltage gain | |||||
Voltage stress | |||||
Maximum diode voltage stress | |||||
Number of switches | 2 | 2 | 2 | 2 | 2 |
Number of diodes | 6 | 8 | 6 | 6 | 8 |
Number of capacitors | 5 | 7 | 5 | 5 | 7 |
Number of coupled inductor | 2 | 2 | 2 | 2 | 2 |
Voltage gain | 10 | 10 | 10 | 10 | 12.5 |
Components | Parameters |
---|---|
Switching frequency | |
Turns ratio of coupled inductor | |
Magnetizing inductances , | |
Leakage inductances , | |
Clamp capacitors , | |
Switched capacitors , | |
Voltage-doubler capacitors , | |
Output capacitor | |
Switches , | IRFP4227 |
Diodes , , , , , | MBR20200CT |
Diodes , | STTH3003CW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-J.; Yang, S.-P.; Huang, C.-M.; Li, S.-D.; Chiu, C.-H. Interleaved High Voltage Gain DC-DC Converter with Winding-Cross-Coupled Inductors and Voltage Multiplier Cells for Photovoltaic Systems. Electronics 2024, 13, 1851. https://doi.org/10.3390/electronics13101851
Chen S-J, Yang S-P, Huang C-M, Li S-D, Chiu C-H. Interleaved High Voltage Gain DC-DC Converter with Winding-Cross-Coupled Inductors and Voltage Multiplier Cells for Photovoltaic Systems. Electronics. 2024; 13(10):1851. https://doi.org/10.3390/electronics13101851
Chicago/Turabian StyleChen, Shin-Ju, Sung-Pei Yang, Chao-Ming Huang, Sin-Da Li, and Cheng-Hsuan Chiu. 2024. "Interleaved High Voltage Gain DC-DC Converter with Winding-Cross-Coupled Inductors and Voltage Multiplier Cells for Photovoltaic Systems" Electronics 13, no. 10: 1851. https://doi.org/10.3390/electronics13101851
APA StyleChen, S. -J., Yang, S. -P., Huang, C. -M., Li, S. -D., & Chiu, C. -H. (2024). Interleaved High Voltage Gain DC-DC Converter with Winding-Cross-Coupled Inductors and Voltage Multiplier Cells for Photovoltaic Systems. Electronics, 13(10), 1851. https://doi.org/10.3390/electronics13101851