Optimized DM-RS Configuration for Improved 5G New Radio Network Capacity and Performance
Abstract
:1. Introduction
2. Related Work
3. Theoretical Background
3.1. 5G/NR Introduction
- Enhanced Mobile Broadband (eMBB), with requirements for extreme capacity (as high as ), high data rates (peak up to 20 Gbps) and high spectral efficiency (peak for downlink);
- Ultra-Reliable Low-Latency Communications (URLLC), with requirements for extreme mobility (as high as 500 km/h), low latency (as low as 1 ms) and ultra-high reliability (99.99% success probability for up to 32 bytes within 1 ms);
- Massive Internet of Things/Massive Machine-Type Communications (mMTC), with requirements for high connection density (as high as ), low complexity and energy efficiency.
3.2. 5G/NR Radio Interface and DMRS Configuration
3.3. 5G/NR Network Deployment Today
4. Doppler Frequency Shift Analysis
5. DM-RS Optimization, Achieved Network Capacity and Performance Improvements
5.1. DM-RS Optimization for FWA Use Case and Improved Capacity
5.2. DM-RS Optimization for MBB Use Case and Improved Peak User Experienced Downlink Throughputs
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericsson Mobility Report, November 2023. Available online: https://www.ericsson.com/en/reports-and-papers/mobility-report (accessed on 6 December 2023).
- Tomic, I.; Bleakley, E.; Ivanis, P. Predictive Capacity Planning for Mobile Networks—ML Supported Prediction of Network Performance and User Experience Evolution. Electronics 2022, 11, 626. [Google Scholar] [CrossRef]
- 3GPP, Technical Specification Group Radio Access Network. Physical Channels and Modulation, Standard (TS) 38.211. v17.6.0, Sec. 7.4.1, 3rd Generation Partnership Project (3GPP), Technical Specification, September 2023. Available online: https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/17.06.00_60/ts_138211v170600p.pdf, (accessed on 31 January 2024).
- Dahlman, E.; Parkvall, S.; Skold, J. 5G NR: The Next Generation Wireless Access Technology; Academic Press: San Diego, CA, USA, 2018. [Google Scholar]
- Zaidi, A.; Athley, F.; Medbo, J.; Gustavsson, U.; Durisi, G.; Chen, X. 5G Physical Layer; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kottkamp, M.; Pandey, A.; Raddino, D.; Roessler, A.; Stuhlfauth, R. 5G New Radio: Fundamentals, Procedures, Testing Aspects; Rohde &Schwarz: Munich, Germany, 2019. [Google Scholar]
- 3GPP TSG RAN WG1 #99 R1-1712244, Evaluation Results of DMRS Design for DL Data Channel; Huawei, HiSilicon: Prague, Czech Republic, 2017.
- 3GPP TSG RAN WG1 #99 R1-1912283, Physical Layer Design for NR V2X Sidelink, Mitsubishi Electric, RAN1 NRAH#1901; Reno, NV, USA, 2019. Available online: https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_99/Docs/R1-1912283.zip, (accessed on 31 January 2024).
- Noh, G.; Hui, B.; Kim, J.; Chung, H.S.; Kim, I. DMRS design and evaluation for 3GPP 5G new radio in a high speed train scenario. In Proceedings of the 2017 IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Noh, G.; Hui, B.; Kim, J.; Kim, I. High speed train communications in 5G: Design elements to mitigate the impact of very high mobility. IEEE Wirel. Commun. 2020, 27, 98–106. [Google Scholar] [CrossRef]
- Li, Q.; Sibel, J.-C.; Berbineau, M.; Dayoub, I.; Gallée, F.; Bonneville, H. Physical Layer Enhancement for Next-Generation Railway Communication Systems. IEEE Access 2022, 10, 83152–83175. [Google Scholar] [CrossRef]
- Martín, J.R.; Pérez Leal, R.; Armada, A.G. Design of DMRS schemes for 5G vehicular communications. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Pawase, C.J.; Chang, K. 5G-NR Physical Layer-Based Solutions to Support High Mobility in 6G Non-Terrestrial Networks. Drones 2023, 7, 176. [Google Scholar] [CrossRef]
- Garcia, M.H.C.; Molina-Galan, A.; Boban, M.; Gozalvez, J.; Coll-Perales, B.; Şahin, T.; Kousaridas, A. A Tutorial on 5G NR V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; He, D.; Li, G.; Lin, X.; Ai, B.; Zhong, Z. Doppler Shift and Coherence Time of 5G Vehicular Channels at 3.5 GHz. In In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 2005–2006. [Google Scholar] [CrossRef]
- Lin, X.; Lin, Z.; Löwenmark, S.E.; Rune, J.; Karlsson, R. Doppler shift estimation in 5G new radio non-terrestrial networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Z.; Yang, A.; Liu, X.; Jin, S.; Sun, P.; Tamrakar, R.; Jiang, D. AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation. China Commun. 2023, 20, 275–287. [Google Scholar] [CrossRef]
- Shojaeifard, A.; Mourad, A.; Haghighat, A.; Hemadeh, I. Deep Learning-based DMRS Configuration for MIMO Channel Estimation. In Proceedings of the WSA 2021: 25th International ITG Workshop on Smart Antennas, French Riviera, France, 10–12 November 2021; pp. 1–4. [Google Scholar]
- Tomić, I.; Lukić, Đ.; Davidović, M.; Drajić, D.; Ivaniš, P. Statistical analysis of CQI reporting and MIMO utilization for down-link scheduling in live LTE mobile network. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2020; Volume 12, pp. 8–12. [Google Scholar] [CrossRef]
- Tomić, I.; Davidović, M.; Drajić, D.; Ivaniš, P. On the impact of network load on CQI reporting and Link Adaptation in LTE systems. In Proceedings of the IcEtran, Stanišići, Bosnia and Herzegovina, 8–10 September 2021; pp. 612–624. [Google Scholar]
- Jakes, W.C. Microwave Mobile Communications; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
Mobile Operator | Use Case | Network Load | Frequency | Band | Bandwidth |
---|---|---|---|---|---|
Network #1 | FWA + MBB | High | F1 | 3.5 GHz | 100 MHz |
F2 | 2600 MHz | 40 MHz | |||
Network #2 | MBB | Moderate | F1 | 3.5 GHz | 100 MHz |
F2 | 3.4 GHz | 100 MHz |
Mobile Operator | Use Case | Network Load | Key Performance Indicator | Improvement Range or Estimate |
---|---|---|---|---|
Network #1 | FWA + MBB | High | Spectral efficiency | (5%, 10%) |
Network capacity PRB utilization | 12% (5%, 8%) | |||
Network #2 | MBB | Moderate | Spectral efficiency | (10%, 15%) |
DL throughput PRB allocation | 15% (2%, 11%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomić, I.; Drajić, D.; Ivaniš, P.; Savković, U.; Tešić, D.; Lorić, A. Optimized DM-RS Configuration for Improved 5G New Radio Network Capacity and Performance. Electronics 2024, 13, 2028. https://doi.org/10.3390/electronics13112028
Tomić I, Drajić D, Ivaniš P, Savković U, Tešić D, Lorić A. Optimized DM-RS Configuration for Improved 5G New Radio Network Capacity and Performance. Electronics. 2024; 13(11):2028. https://doi.org/10.3390/electronics13112028
Chicago/Turabian StyleTomić, Igor, Dejan Drajić, Predrag Ivaniš, Uroš Savković, Djordje Tešić, and Aleksandar Lorić. 2024. "Optimized DM-RS Configuration for Improved 5G New Radio Network Capacity and Performance" Electronics 13, no. 11: 2028. https://doi.org/10.3390/electronics13112028
APA StyleTomić, I., Drajić, D., Ivaniš, P., Savković, U., Tešić, D., & Lorić, A. (2024). Optimized DM-RS Configuration for Improved 5G New Radio Network Capacity and Performance. Electronics, 13(11), 2028. https://doi.org/10.3390/electronics13112028