Context Awareness Assisted Integration System for Land Vehicles
Abstract
:1. Introduction
2. Related Work
2.1. Existing Methods
2.2. Innovative Elements of the New Method
3. Methodology
3.1. Basic Integration Model
3.2. Behavior Recognition
3.3. Constraint Equations
3.3.1. Sensor Error Calibration
3.3.2. Velocity Constraint
3.3.3. Angle Constraint
3.3.4. Position Constraint
4. Simulated Vehicle Experiment
4.1. Experiment Setup
4.2. Data Collection
4.3. Recognition Results
4.3.1. Traditional Threshold-Based Method
4.3.2. Machine Learning-Based Method
4.3.3. Summary of Recognition Results
4.4. Positioning Results
4.4.1. Single Base Station Blockage Condition
4.4.2. Dual Base Stations Blockage Condition
4.4.3. Three Base Stations Blockage Condition
4.4.4. All Four Base Stations Blockage Condition
4.4.5. Summary of Positioning Results
5. Real Vehicle Experiment
5.1. Test Area
5.2. Simulated Signal Blockage
5.3. Performance of Positioning and Recognition Results
5.4. Analysis of Updating Rates of Recognition
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Song, L.; Xu, P.; He, X.; Li, Y.; Hou, J.; Feng, H. Low-cost Improved LSTM Neural Network-Assisted Combined Vehicle-Mounted GNSSSINS Navigation and Positioning Algorithm. Electronics 2023, 12, 3726. [Google Scholar] [CrossRef]
- Zhang, S.; Tu, R.; Gao, Z.; Zhang, P.; Wang, S.; Lu, X. Low-Earth-Orbit Satellites and Robust Theory-Augmented GPS Inertial-Navigation-System Tight Integration for Vehicle-Borne Positioning. Electronics 2024, 13, 508. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.; Yoo, T.; Kim, H. Vehicular Localization Framework with UWB and DAG-Based Distributed Ledger for Ensuring Positioning Accuracy and Security. Electronics 2024, 12, 4756. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, C.; Li, T.; Dong, Y.; Jing, G. Low-cost GPS/INS integration with accurate measurement modeling using an extended state observer. GPS Solut. 2021, 25, 17. [Google Scholar] [CrossRef]
- Yang, L.; Yong, L.; Wu, Y.; Rizos, C. An enhanced MEMS-INS/GNSS integrated system with fault detection and exclusion capability for land vehicle navigation in urban areas. GPS Solut. 2014, 18, 593–603. [Google Scholar] [CrossRef]
- Liu, S. Theories and Methods in Tight Integration of Ambiguity-fixed PPP and INS. Ph.D. Thesis, PLA Information Engineering University, Zhengzhou, China, 2017. [Google Scholar]
- Li, Q. Research on Integrated GPS/INS System and Realization. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2010. [Google Scholar]
- Ya, Q. Model Aided MEMS Rotary INS Independent Navigation Technology for Vehicle. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017. [Google Scholar]
- Xu, J.; Xiong, Z.; Liu, J. Vehicle integrated navigation algorithm based on kinematical model for intelligent mobile phone platform. J. Chin. Inert. Technol. 2017, 25, 203–208. [Google Scholar] [CrossRef]
- Georgy, J. Advanced Nonlinear Techniques for Low Cost Land Vehicle Navigation. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2010. [Google Scholar]
- Jiang, R. Research on the Fusion Positioning Solution for Land Vehicles in Urban Canyons. Master’s Thesis, Southeast University, Nanjing, China, 2018. [Google Scholar]
- Wang, J. Intelligent MEMS INS/GPS Integration for Land Vehicle Navigation. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2006. [Google Scholar]
- Abdolkarimi, E.; Abaei, G.; Mosavi, M. A wavelet-extreme learning machine for low-cost INS/GPS navigation system in high-speed applications. GPS Solut. 2018, 22, 15. [Google Scholar] [CrossRef]
- Chen, W. Research on the Fusion Positioning Solution for Land Vehicles in Satellite Signal-Blocked Traffic Environments. Ph.D. Thesis, Southeast University, Nanjing, China, 2017. [Google Scholar]
- Gao, N.; Zhao, L. An integrated land vehicle navigation system based on context awareness. GPS Solut. 2016, 20, 509–524. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.; Fu, K.; Wu, F. Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 57. [Google Scholar] [CrossRef]
- Yang, Y. Resilient PNT Concept Frame. Cehui Xuebao 2018, 47, 893–898. [Google Scholar] [CrossRef]
- Groves, P.; Martin, H.; Voutsis, K.; Walter, D.; Wang, L. Context detection, categorization and connectivity for advanced adaptive integrated navigation. In Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 1039–1056. [Google Scholar]
- Chen, R.; Chu, T.; Liu, K. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts. Sensors 2015, 15, 21219–21238. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, T.; Guo, H. Context-Aware Using Carrier Phase for Adaptive MEMS IMU/GNSS Filtering in Deep Urban Navigation. Harbin Gongye Daxue Xuebao 2013, 20, 45–49. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Wang, B. Context-Awareness Assisted PPP/INS Integrated Navigation Enhancement Algorithm. In Proceedings of the 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 3699–3704. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, Y.; Wang, J.; Liu, K.; Liu, C. Precise point positioning for ground-based navigation systems without accurate time synchronization. GPS Solut. 2018, 22, 34. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Liu, K.; Chen, G. GH-LPS/INS integration for precise UAV application. In Proceedings of the 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, 1–3 November 2019; pp. 1321–1330. [Google Scholar] [CrossRef]
- Meng, Z.; Li, X.; Zhang, Y.; Liu, K.; Guo, X.; Yang, J. Recent Advances in Positioning Technology of GH-LPS in Challenging Environments. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nuremberg, Germany, 25–28 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.; Wang, D.; Zhang, L.; Wu, J. A real-time inertial-aided cycle slip detection method based on ARIMA-GARCH model for inaccurate lever arm conditions. GPS Solut. 2021, 25, 26. [Google Scholar] [CrossRef]
- Nowicki, M.; Wietrzykowski, J. Low-Effort Place Recognition with WiFi Fingerprints Using Deep Learning. In Proceedings of the International Conference Automation (ICA), Warsaw, Poland, 15–17 March 2017; pp. 575–584. [Google Scholar] [CrossRef]
- Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M. A Survey on Approaches of Motion Mode Recognition Using Sensors. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1662–1686. [Google Scholar] [CrossRef]
- Gao, H.; Groves, P. Context determination for adaptive navigation using multiple sensors on a smartphone. In Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 12–16 September 2016; pp. 742–756. [Google Scholar] [CrossRef]
- Borenstein, J.; Ojeda, L.; Kwanmuang, S. Heuristic Reduction of Gyro Drift for Personnel Tracking Systems. J. Navig. 2009, 62, 41–58. [Google Scholar] [CrossRef]
- Amt, J.H. Methods for Aiding Height Determination in Pseudolite-Based Reference Systems Using Batch Least-Squares Estimation. Master’s Thesis, Air Force Institute of Technology, Dayton, OH, USA, 2006. [Google Scholar]
- Angrisano, A. GNSS/INS Integration Methods. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2010. [Google Scholar]
- Li, H. Methods of Statistical Learning, 2nd ed.; Tsinghua University Press: Beijing, China, 2019; pp. 67–90. [Google Scholar]
- Guo, X.; Liu, K.; Meng, Z.; Li, X.; Yang, J. Pseudolite-Based Lane-Level Vehicle Positioning in Highway Tunnel. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1612–1624. [Google Scholar] [CrossRef]
Content | Qin [8] | Wang [12] | Gao [21] | MLMRC Method |
---|---|---|---|---|
Recognition Method | Manual Fuzzy Rules | Manual Fuzzy Rules | Manual Threshold for Selected Indicators | Machine Learning Methods Based on Previous Data |
Sensors Requirement | IMU Magnetometer | IMU | IMU Magnetometer | IMU |
Constraint Information | Angle Rate Velocity Angle (Requiring Magnetometer) | Sensor Error Velocity Angle | Velocity Angle Rate Angle (Requiring Magnetometer) | Sensor Error Velocity Angle Position |
ID | Name | Definition |
---|---|---|
1 | Max_Min_Acc_X | difference between the maximum and minimum values of the x-axis accelerometer |
2 | Max_Min_Acc_Y | difference between the maximum and minimum values of the y-axis accelerometer |
3 | Std_Acc_X | standard deviation of the x-axis accelerometer |
4 | Std_Acc_Y | standard deviation of the y-axis accelerometer |
5 | Max_Min_Std_Acc_X | difference between the maximum and minimum values of standard deviation values of the x-axis accelerometer |
6 | Max_Min_Std_Acc_Y | difference between the maximum and minimum values of standard deviation values of the y-axis accelerometer |
7 | Norm_Acc | scalar value of the accelerometer |
8 | Abs_Minus_Norm_Acc | absolute value of the variation of the scalar value of the accelerometer |
9 | Norm_Gyo | scalar value of gyroscope |
10 | Filter_Gyo_Z | filtered value of the z-axis gyroscope |
11 | Mean_Gyo_Z | average value of z-axis gyroscope |
Constraint Equation | Motion Behavior | |||
---|---|---|---|---|
Stationary | Straight | Turning | ||
Sensor Error Calibration | bias of accelerometer | √ 1 | × 2 | × |
bias of horizontal axis gyroscope | √ | × | × | |
bias of vertical axis gyroscope | √ | √ | × | |
Velocity Constraint | non-holonomic constraint | √ | √ | √ |
forward velocity constraint | √ | × | √ | |
Angle Constraint | roll angle constraint | √ | √ | × |
heading angle constraint | √ | × | × | |
Position Constraint | height constraint | √ | √ | √ |
BS ID | E (m) | N (m) | U (m) |
---|---|---|---|
BS 1 | −27.191 | −10.056 | 5.861 |
BS 2 | −28.520 | 8.107 | 6.155 |
BS 3 | −44.678 | −11.316 | 6.059 |
BS 4 | −46.102 | 6.879 | 7.224 |
Classifier | Training Time (s) | Training Accuracy | Test Accuracy |
---|---|---|---|
DA | 0.5 | 0.999 | 0.980 |
NB | 0.2 | 0.993 | 0.681 |
kNN | 0.1 | 0.999 | 0.968 |
RF | 3.2 | 0.903 | 0.588 |
SVM | 1.0 | 0.999 | 0.970 |
DT | 0.1 | 0.999 | 0.970 |
Actual Class | Predicted Class | ||
---|---|---|---|
Stop | Straight | Turn | |
Stop | 98.0% | 2.0% | 0.0% |
Straight | 0.0% | 98.6% | 1.4% |
Turn | 0.0% | 0.3% | 99.7% |
Positioning Error (cm) | MLMRC | Traditional | Without | ||||||
---|---|---|---|---|---|---|---|---|---|
E | N | 2D | E | N | 2D | E | N | 2D | |
MAX | 5.4 | 6.6 | 10.1 | 5.4 | 6.7 | 10.2 | 6.0 | 4.8 | 7.5 |
MEAN | −2.7 | 2.1 | 4.3 | −2.8 | 2.1 | 4.4 | −2.4 | 1.7 | 3.2 |
RMS | 4.0 | 2.7 | 4.8 | 4.0 | 2.7 | 4.8 | 3.1 | 2.2 | 3.8 |
Positioning Error (cm) | MLMRC | Traditional | Without | ||||||
---|---|---|---|---|---|---|---|---|---|
E | N | 2D | E | N | 2D | E | N | 2D | |
MAX | 106.9 | 8.4 | 107.0 | 120.8 | 8.4 | 120.9 | 441.5 | 62.8 | 441.5 |
MEAN | −3.3 | 1.1 | 26.8 | −3.3 | 1.2 | 31.6 | −7.9 | −2.4 | 109.3 |
RMS | 39.5 | 2.9 | 39.6 | 44.1 | 3.1 | 44.2 | 151.0 | 12.9 | 151.6 |
Positioning Error (cm) | MLMRC | Traditional | Without | ||||||
---|---|---|---|---|---|---|---|---|---|
E | N | 2D | E | N | 2D | E | N | 2D | |
MAX | 112.4 | 76.0 | 113.0 | 182.3 | 75.6 | 183.1 | 357.7 | 490.0 | 527.8 |
MEAN | −1.8 | 8.8 | 33.3 | 1.1 | 9.0 | 40.9 | −23.9 | 98.2 | 159.6 |
RMS | 31.3 | 26.3 | 40.9 | 43.6 | 26.6 | 51.1 | 128.6 | 152.9 | 199.9 |
Positioning Error (cm) | MLMRC | Traditional | Without | ||||||
---|---|---|---|---|---|---|---|---|---|
E | N | 2D | E | N | 2D | E | N | 2D | |
MAX | 44.9 | 42.3 | 93.4 | 112.7 | 42.6 | 112.8 | 439.7 | 183.4 | 442.8 |
MEAN | −1.5 | 4.1 | 27.2 | 5.2 | 4.1 | 27.2 | 31.0 | 31.9 | 91.5 |
RMS | 20.4 | 18.9 | 27.8 | 29.8 | 19.1 | 35.4 | 116.2 | 58.8 | 130.2 |
Actual Class | Predicted Class | ||
---|---|---|---|
Stop | Straight | Turn | |
Stop | 93.4% | 0.0% | 6.6% |
Straight | 2.9% | 97.1% | 0.0% |
Turn | 34.1% | 22.6% | 43.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Guo, X.; Liu, K.; Meng, Z.; Chen, G.; Tang, Y.; Yang, J. Context Awareness Assisted Integration System for Land Vehicles. Electronics 2024, 13, 2038. https://doi.org/10.3390/electronics13112038
Li X, Guo X, Liu K, Meng Z, Chen G, Tang Y, Yang J. Context Awareness Assisted Integration System for Land Vehicles. Electronics. 2024; 13(11):2038. https://doi.org/10.3390/electronics13112038
Chicago/Turabian StyleLi, Xiaoyu, Xiye Guo, Kai Liu, Zhijun Meng, Guokai Chen, Yuqiu Tang, and Jun Yang. 2024. "Context Awareness Assisted Integration System for Land Vehicles" Electronics 13, no. 11: 2038. https://doi.org/10.3390/electronics13112038
APA StyleLi, X., Guo, X., Liu, K., Meng, Z., Chen, G., Tang, Y., & Yang, J. (2024). Context Awareness Assisted Integration System for Land Vehicles. Electronics, 13(11), 2038. https://doi.org/10.3390/electronics13112038