Enhancing Federated Learning in Heterogeneous Internet of Vehicles: A Collaborative Training Approach
Abstract
:1. Introduction
2. Related Works
2.1. Heterogeneous Federated Learning
2.2. Federated Learning in the IoV
3. System Model
3.1. Federated Learning Architecture
3.2. Model Partition Collaborative Training Process
4. Optimal Collaborative Vehicle Matching
4.1. Client Latency Analysis
4.1.1. Independent Training Delay
4.1.2. Collaborative Training Delay
4.2. Vehicle Common Path Assess
4.3. Collaborative Vehicle Match
5. Simulation Result
5.1. Simulation Setup
5.1.1. Models and Datasets
5.1.2. Experimental Environment
5.1.3. Resource Heterogeneity
5.1.4. Benchmark
5.1.5. Performance Metrics
5.2. Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aouedi, O.; Vu, T.H.; Sacco, A.; Nguyen, D.C.; Piamrat, K.; Marchetto, G.; Pham, Q.V. A survey on intelligent Internet of Things: Applications, security, privacy, and future directions. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yan, Z.; Wan, Z.; Jäntti, R. A survey on blockchain-based trust management for Internet of Things. IEEE Internet Things J. 2023, 10, 5898–5922. [Google Scholar] [CrossRef]
- Teng, S.; Hu, X.; Deng, P.; Li, B.; Li, Y.; Ai, Y.; Yang, D.; Li, L.; Xuanyuan, Z.; Zhu, F.; et al. Motion planning for autonomous driving: The state of the art and future perspectives. IEEE Trans. Intell. Veh. 2023, 8, 3692–3711. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, R.; Zhou, Z.; Hu, C. Trustworthy Fault diagnosis method based on belief rule base with multisource uncertain information for vehicle. IEEE Trans. Ind. Electron. 2023, 71, 7947–7956. [Google Scholar] [CrossRef]
- Gong, T.; Zhu, L.; Yu, F.R.; Tang, T. Edge intelligence in intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8919–8944. [Google Scholar] [CrossRef]
- Liang, P.P.; Zadeh, A.; Morency, L.P. Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. arXiv 2022, arXiv:2209.03430. [Google Scholar] [CrossRef]
- Ernest, T.Z.H.; Madhukumar, A. Computation offloading in MEC-enabled IoV networks: Average energy efficiency analysis and learning-based maximization. IEEE Trans. Mob. Comput. 2024, 23, 6074–6087. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Y.; Zou, T.; Pu, Y.; He, Y.; Ye, X.; Ouyang, Y.; Zhang, Y.Q.; Yang, Q. Vertical federated learning: Concepts, advances, and challenges. IEEE Trans. Knowl. Data Eng. 2024, 36, 3615–3634. [Google Scholar] [CrossRef]
- Hu, X.; Li, R.; Wang, L.; Ning, Y.; Ota, K. A data sharing scheme based on federated learning in iov. IEEE Trans. Veh. Technol. 2023, 72, 11644–11656. [Google Scholar] [CrossRef]
- Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous resources in mobile edge. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Maurya, C.; Chaurasiya, V.K. Efficient anonymous batch authentication scheme with conditional privacy in the Internet of Vehicles (IoV) applications. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9670–9683. [Google Scholar] [CrossRef]
- Shen, J.; Wang, X.; Cheng, N.; Ma, L.; Zhou, C.; Zhang, Y. Effectively heterogeneous federated learning: A pairing and split learning based approach. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 5847–5852. [Google Scholar]
- Wu, D.; Ullah, R.; Harvey, P.; Kilpatrick, P.; Spence, I.; Varghese, B. Fedadapt: Adaptive offloading for iot devices in federated learning. IEEE Internet Things J. 2022, 9, 20889–20901. [Google Scholar] [CrossRef]
- Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous online federated learning for edge devices with non-iid data. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 15–24. [Google Scholar]
- Zhou, X.; Liang, W.; Kawai, A.; Fueda, K.; She, J.; Kevin, I.; Wang, K. Adaptive segmentation enhanced asynchronous federated learning for sustainable intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6658–6666. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2020, 2, 429–450. [Google Scholar]
- Huang, H.; Shi, W.; Feng, Y.; Niu, C.; Cheng, G.; Huang, J.; Liu, Z. Active client selection for clustered federated learning. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, F.; Xiong, J.; Chen, X. Helios: Heterogeneity-aware federated learning with dynamically balanced collaboration. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 997–1002. [Google Scholar]
- Diao, E.; Ding, J.; Tarokh, V. Heterofl: Computation and communication efficient federated learning for heterogeneous clients. arXiv 2020, arXiv:2010.01264. [Google Scholar]
- Xiao, H.; Zhao, J.; Pei, Q.; Feng, J.; Liu, L.; Shi, W. Vehicle selection and resource optimization for federated learning in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11073–11087. [Google Scholar] [CrossRef]
- Taik, A.; Mlika, Z.; Cherkaoui, S. Clustered vehicular federated learning: Process and optimization. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25371–25383. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Deng, X.; Wan, S. FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks. IEEE Trans. Intell. Transp. Syst. 2021, 23, 1616–1629. [Google Scholar] [CrossRef]
- Liang, F.; Yang, Q.; Liu, R.; Wang, J.; Sato, K.; Guo, J. Semi-synchronous federated learning protocol with dynamic aggregation in internet of vehicles. IEEE Trans. Veh. Technol. 2022, 71, 4677–4691. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Wu, D.; Wang, R.; Zhang, P.; Wu, Y. Efficient asynchronous federated learning research in the internet of vehicles. IEEE Internet Things J. 2022, 10, 7737–7748. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, Y.; Huang, H.; Shu, J.; Jia, X. Toward robust hierarchical federated learning in internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5600–5614. [Google Scholar] [CrossRef]
- Liu, S.; Yu, G.; Yin, R.; Yuan, J.; Qu, F. Communication and computation efficient federated learning for Internet of vehicles with a constrained latency. IEEE Trans. Veh. Technol. 2023, 73, 1038–1052. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W.; Zhao, H.; Chang, Z.; Han, Z. Joint Accuracy and Latency Optimization for Quantized Federated Learning in Vehicular Networks. IEEE Internet Things J. 2024, 11, 28876–28890. [Google Scholar] [CrossRef]
- Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated learning in vehicular edge computing: A selective model aggregation approach. IEEE Access 2020, 8, 23920–23935. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Luo, Y. A federated learning-based edge caching approach for mobile edge computing-enabled intelligent connected vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 24, 3360–3369. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do cifar-10 classifiers generalize to cifar-10? arXiv 2018, arXiv:1806.00451. [Google Scholar]
- Yang, Z.; Wang, R.; Wu, D.; Wang, H.; Song, H.; Ma, X. Local trajectory privacy protection in 5G enabled industrial intelligent logistics. IEEE Trans. Ind. Inform. 2021, 18, 2868–2876. [Google Scholar] [CrossRef]
- Yoshida, N.; Nishio, T.; Morikura, M.; Yamamoto, K.; Yonetani, R. Hybrid-FL for wireless networks: Cooperative learning mechanism using non-IID data. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Lu, X.; Liao, Y.; Liu, C.; Lio, P.; Hui, P. Heterogeneous model fusion federated learning mechanism based on model mapping. IEEE Internet Things J. 2021, 9, 6058–6068. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Local training round | 5 |
Global aggregation round | 150 |
Local iterators | SGD |
Learning rate | 0.01 |
Batch data volume | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Fan, H.; Wang, K.; Zhang, P. Enhancing Federated Learning in Heterogeneous Internet of Vehicles: A Collaborative Training Approach. Electronics 2024, 13, 3999. https://doi.org/10.3390/electronics13203999
Wu C, Fan H, Wang K, Zhang P. Enhancing Federated Learning in Heterogeneous Internet of Vehicles: A Collaborative Training Approach. Electronics. 2024; 13(20):3999. https://doi.org/10.3390/electronics13203999
Chicago/Turabian StyleWu, Chao, Hailong Fan, Kan Wang, and Puning Zhang. 2024. "Enhancing Federated Learning in Heterogeneous Internet of Vehicles: A Collaborative Training Approach" Electronics 13, no. 20: 3999. https://doi.org/10.3390/electronics13203999
APA StyleWu, C., Fan, H., Wang, K., & Zhang, P. (2024). Enhancing Federated Learning in Heterogeneous Internet of Vehicles: A Collaborative Training Approach. Electronics, 13(20), 3999. https://doi.org/10.3390/electronics13203999