Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications
Abstract
:1. Introduction
2. Related Works
2.1. Fast CU Partition Structure Decision
2.1.1. Heuristic Methods
2.1.2. Machine Learning Methods
2.1.3. Deep Learning Methods
2.2. Fast Intra Mode Prediction
3. Statistical Analysis of Intra Coding
3.1. CU Partition Depth Distribution
- (1)
- High-resolution sequences tend to be coded with a large CU size, and lower-resolution sequences prefer using a small CU size.
- (2)
- The percentage of large size CU increases gradually with the increasing of QP.
- (3)
- The percentage of CUs decreases with the decreasing of the CU size on the trend.
- (4)
- Nearly two thirds of regions are coded with MT CUs.
- (1)
- Generally, flat regions imply a simple CU partition mode, while rich texture regions adopt a more complex CU partition structure.
- (2)
- Since two directions of multi-type tree partition are employed in VVC, the partition direction is related to the texture direction. Taking the edge areas as an example, the texture extends vertically with the woman’s body, and thus the majority of partitions tend to be vertical as well.
- (3)
- If the texture complexity among the sub-CUs is different, the current CU probably needs to be split into smaller CUs.
- (1)
- Nearly two-thirds of the complex CUs need to be further partitioned, especially for the videos with lower resolution.
- (2)
- More than 70% of simple CUs terminate the partition process at the current depth level, especially for the videos with high resolution.
- (3)
- The probability of early termination for fuzzy CUs is about 50%.
3.2. Intra Prediction Mode Distribution
- (1)
- Intra mode distribution is closely related to the sequence resolution. High-resolution sequences have more flat areas, which tend to select DC or planar mode as the best mode.
- (2)
- About 78.6% of the CUs best mode can be found in MPM, and it reaches 85% for some sequences with a high spatial correlation.
4. Proposed Algorithm
4.1. Random Forest-Guided Classification for Fast CU Partition
4.1.1. System Overview of CU Partition Structure
4.1.2. Feature Extraction
4.1.3. Random Forest Training
4.2. Fast Intra Mode Prediction
- (1)
- The 65 directional prediction modes are divided into four groups. Prediction modes from 10 to 26 are categorized as the horizontal group (), prediction modes from 42 to 58 are categorized as the vertical group (), prediction modes from 2 to 10 and 58 to 66 are categorized as the 45° diagonal group (), and prediction modes 26 to 42 are categorized as the 135° diagonal group ().
- (2)
- The gradients of four directions are computed, including horizontal (), vertical (), diagonal down right (), and diagonal down left (). The maximum value of is denoted as . Only if is larger than a threshold is the corresponding prediction mode group added into the coarse search range, where the . One exception is that all 67 prediction modes are added into the search range only if all are smaller than . In our experiments, is set to 1.5.
5. Experimental Results
5.1. Performance Evaluation of Proposed Algorithm
5.2. Comparison with Others
5.3. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VCC | versatile video coding |
HEVC | high-efficiency video coding |
CU | coding unit |
QTMT | quadtree with nested multi-type tree |
BDBR | Bjøntegaard delta bit rate |
BDPSNR | Bjøntegaard delta peak signal-to-noise rate |
QT | quadtree |
CTU | coding tree unit |
MT | multi-type |
BV | vertical binary tree |
BH | horizontal binary tree |
TV | vertical ternary tree |
TH | horizontal ternary tree |
RDO | rate-distortion optimization |
TS-FMD | the classical three-step fast intra mode decision |
RMD | rough mode decision |
MPM | most probable model |
SVM | support vector machine |
LPTCM | Laplace transparent composite model |
CNN | convolutional neural network |
AGH | the average gradients in the horizontal |
AGV | the average gradients in the vertical |
pRMS | progressive rough mode search |
NMSE | neighboring mean squared error |
DDR | diagonal down right |
DDL | diagonal down left |
SCCD | sub-CUs complexity difference |
NCC | neighboring CUs complexity |
NCD | neighboring CUs depth |
RFC | random forest classifier |
CART | classification and regression tree |
RF | random forest |
FCPD | fast CU partition decision |
FIMP | fast intra mode prediction |
References
- Bross, B. Versatile Video Coding (Draft 1). In Proceedings of the Joint Video Exploration Team (JVET), San Diego, CA, USA, 10–20 April 2018. [Google Scholar]
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Liu, S.; Brass, B.; Chen, J. Versatile Video Coding (Draft 2). In Proceedings of the 11th JVET Meeting, Ljubljana, Slovenia, 10–18 July 2018; Volume 22, pp. 1649–1668. [Google Scholar]
- Lin, S.; Chen, H.; Zhang, H.; Maxim, S.; Yang, H.; Zhou, J. Affine Transform Prediction for Next Generation Video Coding. In Huawei Technologies, International Organisation for Standardisation Organisation Internationale De Normalisation ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio, ISO/IEC JTC1/SC29/WG11 MPEG2015/m37525; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Bossen, F.; Li, X.; Suehring, K. AHG report: Test model software development (AHG3). In Proceedings of the Joint Video Exploration Team (JVET), San Diego, CA, USA, 10–20 April 2018. [Google Scholar]
- Chen, C.W. Internet of Video Things: Next-Generation IoT With Visual Sensors. IEEE Internet Things J. 2020, 7, 6676–6685. [Google Scholar] [CrossRef]
- Bross, B.; Chen, J.; Liu, S. Versatile Video Coding (Draft 5). In Proceedings of the Joint Video Exploration Team (JVET), Geneva, Switzerland, 19–27 March 2019. [Google Scholar]
- Chang, Y.; Jhu, H.; Jiang, H.; Zhao, L.; Zhao, X.; Li, X.; Liu, S.; Bross, B.; Keydel, P.; Schwarz, H.; et al. Multiple Reference Line Coding for Most Probable Modes in Intra Prediction. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; p. 559. [Google Scholar]
- De-Luxn-Hernndez, S.; Valeri, G.; Ma, J.; Tung, N.; Schwarz, H.; Marpe, D.; Wiegand, T. An Intra Subpartition Coding Mode for VVC. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1203–1207. [Google Scholar]
- Piao, Y.; Min, J.; Chen, J. Encoder Improvement of Unified Intra Prediction. In Proceedings of the Joint Collaborative Team on Video Coding (JCT-VC), Guangzhou, China, 7–15 October 2010. [Google Scholar]
- Chen, J.; Chen, Y.; Karczewicz, M.; Li, X.; Liu, H.; Zhang, L.; Zhao, X. Coding tools investigation for next generation video coding based on HEVC. In Proceedings of the Applications of Digital Image Processing XXXVIII, San Diego, CA, USA, 10–13 August 2015. [Google Scholar]
- Gu, J.; Tang, M.; Wen, J.; Han, Y. Adaptive Intra Candidate Selection With Early Depth Decision for Fast Intra Prediction in HEVC. IEEE Signal Process. Lett. 2018, 25, 159–163. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Song, Y.; Zhang, H.; Ding, X.; Zhang, D. Early Intra CU Size Decision for Versatile Video Coding Based on a Tunable Decision Model. IEEE Trans. Broadcast. 2021, 67, 710–720. [Google Scholar] [CrossRef]
- Ni, C.T.; Lin, S.H.; Chen, P.Y.; Chu, Y.T. High Efficiency Intra CU Partition and Mode Decision Method for VVC. IEEE Access 2022, 10, 77759–77771. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, H.; Mu, F.; Chen, H. Fast CU Partitioning Algorithm for H.266/VVC Intra-Frame Coding. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 55–60. [Google Scholar]
- Lei, M.; Luo, F.; Zhang, X.; Wang, S.; Ma, S. Look-Ahead Prediction Based Coding Unit Size Pruning for VVC Intra Coding. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4120–4124. [Google Scholar]
- Saldanha, M.; Sanchez, G.; Marcon, C.; Agostini, L. Fast Partitioning Decision Scheme for Versatile Video Coding Intra-Frame Prediction. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 10–21 October 2020; pp. 1–5. [Google Scholar]
- Cui, J.; Zhang, T.; Gu, C.; Zhang, X.; Ma, S. Gradient-Based Early Termination of CU Partition in VVC Intra Coding. In Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; pp. 103–112. [Google Scholar]
- Fan, Y.; Chen, J.; Sun, H.; Katto, J.; Jing, M. A Fast QTMT Partition Decision Strategy for VVC Intra Prediction. IEEE Access 2020, 8, 107900–107911. [Google Scholar] [CrossRef]
- Kim, H.; Park, R. Fast CU Partitioning Algorithm for HEVC Using an Online-Learning-Based Bayesian Decision Rule. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 130–138. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Zhang, Q. FSVM- and DAG-SVM-Based Fast CU-Partitioning Algorithm for VVC Intra-Coding. Symmetry 2023, 15, 1078. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Zhang, Q. Fast CU size decision and intra-prediction mode decision method for H.266/VVC. EURASIP J. Image Video Process. 2024, 7, 7. [Google Scholar] [CrossRef]
- Erabadda, B.; Mallikarachchi, T.; Kulupana, G.; Fernando, A. Content Adaptive Fast CU Size Selection for HEVC Intra-Prediction. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–2. [Google Scholar]
- Shan, Y.; Yang, E. Fast HEVC intra coding algorithm based on machine learning and Laplacian Transparent Composite Model. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2642–2646. [Google Scholar]
- Yang, H.; Shen, L.; Dong, X.; Ding, Q.; An, P.; Jiang, G. Low-Complexity CTU Partition Structure Decision and Fast Intra Mode Decision for Versatile Video Coding. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1668–1682. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Huang, L.; Jiang, B. Fast CU Partition and Intra Mode Decision Method for H.266/VVC. IEEE Access 2020, 8, 117539–117550. [Google Scholar] [CrossRef]
- Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5638–5649. [Google Scholar] [CrossRef]
- Chen, J.-J.; Chou, Y.-G.; Jiang, C.-S. Speed Up VVC Intra-Coding by Learned Models and Feature Statistics. IEEE Access 2023, 11, 124609–124623. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Tian, R.; Xu, M.; Kuo, C.C.J. Texture-Classification Accelerated CNN Scheme for Fast Intra CU Partition in HEVC. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 241–249. [Google Scholar]
- Li, Y.; Li, L.; Fang, Y.; Peng, H.; Ling, N. Bagged tree and ResNet-based joint end-to-end fast CTU partition decision algorithm for video intra coding. Electronics 2022, 11, 1264. [Google Scholar] [CrossRef]
- Wang, T.; Wei, G.; Li, H.; Bui, T.; Zeng, Q.; Wang, R. A Method to Reduce the Intra-Frame Prediction Complexity of HEVC Based on D-CNN. Electronics 2023, 12, 2091. [Google Scholar] [CrossRef]
- Zan, Z.; Huang, L.; Chen, S.; Zhang, X.; Zhao, Z.; Yin, H.; Fan, Y. Fast QTMT Partition for VVC Intra Coding Using U-Net Framework. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 600–604. [Google Scholar]
- Tang, G.; Jing, M.; Zeng, X.; Fan, Y. Adaptive CU Split Decision with Pooling-variable CNN for VVC Intra Encoding. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Tissier, A.; Hamidouche, W.; Vanne, F.G.J.; Menard, D. CNN Oriented Complexity Reduction Of VVC Intra Encoder. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual Conference, 25–28 October 2020; pp. 3139–3143. [Google Scholar]
- da Silva, T.L.; Agostini, L.V.; da Silva Cruz, L.A. Fast HEVC intra prediction mode decision based on EDGE direction information. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 1214–1218. [Google Scholar]
- Zhang, T.; Sun, M.T.; Gao, W. Fast Intra-Mode and CU Size Decision for HEVC. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 1714–1726. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Izquierdo, E. Fast intra mode decision for HEVC based on texture characteristic from RMD and MPM. In Proceedings of the 2014 IEEE Visual Communications and Image Processing Conference, Valletta, Malta, 7–10 December 2014; pp. 510–513. [Google Scholar] [CrossRef]
- Gwon, D.; Choi, H.; Youn, J.M. HEVC fast intra mode decision based on edge and SATD cost. In Proceedings of the 2015 Asia Pacific Conference on Multimedia and Broadcasting, Bali, Indonesia, 23–25 April 2015; pp. 1–5. [Google Scholar]
- Zhang, H.; Ma, Z. Fast Intra Mode Decision for High Efficiency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 660–668. [Google Scholar] [CrossRef]
- Jamali, M.; Coulombe, S. Fast HEVC Intra Mode Decision Based on RDO Cost Prediction. IEEE Trans. Broadcast. 2019, 65, 109–122. [Google Scholar] [CrossRef]
- Ogata, J.; Ichige, K. Fast Intra Mode Decision Method Based on Outliers of DCT Coefficients and Neighboring Block Information for H.265/HEVC. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Ryu, S.; Kang, J. Machine Learning-Based Fast Angular Prediction Mode Decision Technique in Video Coding. IEEE Trans. Image Process. 2018, 27, 5525–5538. [Google Scholar] [CrossRef]
- Song, N.; Liu, Z.; Ji, X.; Wang, D. CNN oriented fast PU mode decision for HEVC hardwired intra encoder. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 239–243. [Google Scholar]
- Ting, H.; Fang, H.; Wang, J. Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18–20 March 2019; pp. 20–24. [Google Scholar]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees. Eur. J. Oper. Res. 1985, 19, 144. [Google Scholar]
Class | QP | Quadtree Depth 2 | Quadtree Depth 3 | Quadtree Depth 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 22 | 20.9 | 20.5 | 19.2 | 11.1 | 8.9 | 2.9 | 5.3 | 5.8 | 3.3 | 1.2 | 0.6 | 0.4 |
A1 | 27 | 28.1 | 29.4 | 19.7 | 9.2 | 5.4 | 2.4 | 2.4 | 1.7 | 1.0 | 0.4 | 0.2 | 0.1 |
A1 | 32 | 36.8 | 30.8 | 18.1 | 6.8 | 3.3 | 1.7 | 1.2 | 0.6 | 0.3 | 0.2 | 0.1 | 0 |
A1 | 37 | 51.2 | 27.3 | 12.3 | 4.4 | 2.4 | 1.1 | 0.8 | 0.3 | 0.1 | 0.1 | 0 | 0 |
A2 | 22 | 13.4 | 10.6 | 16.4 | 19.3 | 18.1 | 4.6 | 6.6 | 6.1 | 3.0 | 1.1 | 0.5 | 0.3 |
A2 | 27 | 21.8 | 16.6 | 22.5 | 16.0 | 12.0 | 3.6 | 3.4 | 2.2 | 1.1 | 0.5 | 0.2 | 0.1 |
A2 | 32 | 24.4 | 18.5 | 23.4 | 15.1 | 11.1 | 2.5 | 2.6 | 1.5 | 0.5 | 0.3 | 0.1 | 0 |
A2 | 37 | 29.4 | 22.1 | 24.8 | 12.8 | 7.6 | 1.4 | 1.1 | 0.5 | 0.1 | 0.1 | 0 | 0 |
B | 22 | 6.5 | 6.1 | 13.8 | 17.6 | 15.5 | 4.1 | 8.0 | 11.4 | 6.7 | 7.3 | 2.0 | 1.1 |
B | 27 | 11.1 | 11.0 | 20.1 | 16.8 | 11.7 | 4.9 | 7.5 | 7.2 | 5.9 | 2.0 | 1.2 | 0.9 |
B | 32 | 14.5 | 15.2 | 23.6 | 14.9 | 10.2 | 4.1 | 6.2 | 5.0 | 3.7 | 1.3 | 0.8 | 0.5 |
B | 37 | 19.2 | 19.6 | 25.8 | 13.0 | 9.2 | 3.2 | 4.3 | 2.9 | 1.6 | 0.7 | 0.3 | 0.2 |
C | 22 | 0 | 1.2 | 3.7 | 5.6 | 7.6 | 4.2 | 13.8 | 22.1 | 24.0 | 5.8 | 6.2 | 5.8 |
C | 27 | 0.2 | 2.2 | 5.5 | 7.6 | 11.1 | 6.0 | 16.2 | 19.2 | 17.4 | 5.8 | 4.8 | 3.8 |
C | 32 | 0.3 | 4.3 | 11.3 | 12.4 | 14.4 | 7.2 | 14.9 | 14.6 | 11.5 | 3.9 | 3.0 | 2.2 |
C | 37 | 1.2 | 10.3 | 16.8 | 15.4 | 16.0 | 6.5 | 12.2 | 9.9 | 6.5 | 2.7 | 1.6 | 0.9 |
D | 22 | 0 | 1.8 | 3.5 | 4.5 | 7.1 | 4.2 | 13.3 | 20.4 | 25.1 | 5.0 | 7.3 | 8.0 |
D | 27 | 0 | 1.7 | 5.9 | 7.0 | 9.4 | 5.8 | 16.1 | 17.8 | 18.4 | 5.5 | 6.1 | 6.1 |
D | 32 | 0.3 | 3.7 | 9.4 | 10.0 | 11.1 | 8.5 | 16.1 | 14.7 | 14.4 | 4.4 | 4.1 | 3.4 |
D | 37 | 0.6 | 7.5 | 14.5 | 13.0 | 14.3 | 8.8 | 13.9 | 11.2 | 9.1 | 3.2 | 2.4 | 1.6 |
E | 22 | 8.5 | 15.6 | 19.5 | 14.1 | 12.4 | 4.9 | 8.4 | 7.3 | 5.8 | 1.5 | 1.2 | 0.7 |
E | 27 | 21.9 | 13.0 | 16.4 | 12.9 | 11.2 | 4.9 | 7.1 | 5.8 | 4.2 | 1.3 | 0.9 | 0.5 |
E | 32 | 25.8 | 15.2 | 17.8 | 12.1 | 10.7 | 4.3 | 5.9 | 4.1 | 2.5 | 0.9 | 0.5 | 0.2 |
E | 37 | 30.2 | 17.5 | 20.0 | 11.9 | 9.4 | 3.3 | 3.7 | 2.3 | 1.1 | 0.5 | 0.2 | 0 |
F | 22 | 7.0 | 12.2 | 19.0 | 11.6 | 7.6 | 6.3 | 9.5 | 9.1 | 8.9 | 3.0 | 3.0 | 2.9 |
F | 27 | 9.1 | 15.0 | 20.4 | 12.4 | 8.9 | 5.8 | 9.3 | 7.7 | 5.9 | 2.3 | 1.8 | 1.5 |
F | 32 | 11.0 | 18.3 | 21.4 | 13.0 | 9.5 | 5.9 | 7.9 | 5.3 | 4.2 | 1.5 | 1.2 | 0.9 |
F | 37 | 14.9 | 20.6 | 23.0 | 12.1 | 7.5 | 5.3 | 6.9 | 4.5 | 3.0 | 0.9 | 0.7 | 0.5 |
Average | 14.6 | 13.9 | 16.7 | 11.9 | 10.1 | 4.6 | 8.0 | 7.9 | 6.8 | 2.3 | 1.8 | 1.5 |
Class | Simple | Fuzzy | Complex |
---|---|---|---|
A1 | 21.85 | 43.87 | 58.8 |
A2 | 26.04 | 50.2 | 65.32 |
B | 27.12 | 51.92 | 66.44 |
C | 30.29 | 50.49 | 73.01 |
D | 31.96 | 59.52 | 71.04 |
E | 25.89 | 52.65 | 64.89 |
F | 38.13 | 54.29 | 65.39 |
Average | 28.75 | 52.99 | 66.42 |
Class | Planar | DC | Angel Modes | |
---|---|---|---|---|
A1 | 47.0 | 6.2 | 46.8 | 81.2 |
A2 | 41.5 | 7.9 | 50.6 | 84.5 |
B | 40.6 | 6.4 | 53.0 | 83.8 |
C | 25.5 | 4.4 | 70.1 | 76.4 |
D | 29.3 | 4.2 | 66.5 | 67.9 |
E | 32.2 | 4.0 | 63.7 | 78.0 |
F | 13.0 | 2.5 | 84.5 | 78.7 |
Average | 32.7 | 5.1 | 62.2 | 78.6 |
QP | Horizontal | Vertical | 45 | 135 |
---|---|---|---|---|
22 | 10.67 | 3.37 | 4.98 | 12.25 |
27 | 10.55 | 3.44 | 4.93 | 10.89 |
32 | 9.99 | 3.43 | 5.06 | 9.52 |
37 | 9.25 | 3.94 | 5.29 | 8.19 |
Average | 10.11 | 3.52 | 5.06 | 10.21 |
Class | Sequence | FCPD | FIMP | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BDBR | BDPSNR | BDBR | BDPSNR | BDBR | BDPSNR | |||||
(%) | (dB) | (%) | (%) | (dB) | (%) | (%) | (dB) | (%) | ||
A1 | Tango2 * | 0.49 | −0.04 | 60.25 | 0.32 | −0.02 | 21.76 | 0.67 | −0.06 | 66.84 |
FoodMarket | 0.44 | −0.04 | 59.63 | 0.94 | −0.04 | 19.68 | 1.23 | −0.06 | 64.68 | |
Campfire | 1.04 | −0.09 | 56.22 | 0.74 | −0.01 | 25.69 | 1.62 | −0.11 | 65.95 | |
A2 | Catrobot * | 1.02 | −0.05 | 57.8 | 0.39 | −0.02 | 25.79 | 1.25 | −0.07 | 64.58 |
DaylightRoad2 | 0.93 | −0.07 | 63.62 | 0.68 | −0.01 | 27.98 | 1.44 | −0.07 | 71.88 | |
ParkRuning3 | 0.58 | −0.03 | 53.52 | 0.55 | −0.01 | 20.36 | 0.99 | −0.05 | 59.67 | |
B | BasketballDrive | 1.8 | −0.06 | 61.76 | 0.75 | −0.01 | 23.47 | 2.39 | −0.07 | 67.87 |
BQTerrace * | 1.42 | −0.11 | 63.97 | 0.79 | −0.04 | 28.74 | 1.92 | −0.14 | 70.08 | |
Cactus | 1.35 | −0.09 | 63.46 | 0.48 | −0.03 | 25.64 | 1.69 | −0.11 | 69.43 | |
Kimono | 1.06 | −0.02 | 66.89 | 0.22 | −0.01 | 22.71 | 1.1 | −0.03 | 72.25 | |
ParkScene | 1.82 | −0.17 | 63.35 | 0.26 | −0.01 | 27.84 | 1.89 | −0.18 | 72.19 | |
C | BasketballDrill | 0.99 | −0.2 | 53.24 | 0.37 | −0.04 | 29.65 | 1.22 | −0.24 | 65.63 |
BQMall | 1.11 | −0.1 | 61.24 | 0.39 | −0.04 | 27.84 | 1.39 | −0.13 | 69.26 | |
PartyScene * | 1.3 | −0.16 | 51.93 | 0.8 | −0.01 | 35.11 | 2.09 | −0.14 | 65.64 | |
RaceHorsesC | 0.48 | −0.15 | 52.83 | 0.54 | −0.05 | 32.32 | 0.93 | −0.22 | 64.16 | |
D | BasketballPass | 1.28 | −0.16 | 46.06 | 0.62 | −0.02 | 31.11 | 1.6 | −0.09 | 59.74 |
BlowingBubbles * | 0.83 | −0.09 | 53.78 | 0.48 | −0.01 | 29.27 | 1.09 | −0.15 | 63.09 | |
BQSquare | 0.49 | −0.08 | 49.71 | 0.64 | −0.06 | 33.38 | 0.93 | −0.2 | 62.11 | |
RaceHorses | 0.36 | −0.04 | 41.18 | 0.32 | −0.07 | 31.94 | 0.62 | −0.15 | 56.29 | |
E | FourPeople * | 1.72 | −0.13 | 62.53 | 0.4 | −0.07 | 25.33 | 2.09 | −0.19 | 70.57 |
Johnny | 1.9 | −0.16 | 64.29 | 0.94 | −0.06 | 23.66 | 2.67 | −0.11 | 72.24 | |
KristenAndSara | 2.12 | −0.13 | 65.58 | 0.38 | −0.06 | 24.98 | 2.29 | −0.19 | 72.98 | |
F | BasketballDrillText | 1.53 | −0.14 | 55.31 | 1.08 | −0.06 | 25.29 | 2.45 | −0.17 | 64.51 |
ChinaSpeed | 2.17 | −0.18 | 54.31 | 0.81 | −0.04 | 34.74 | 2.32 | −0.19 | 66.19 | |
SlideEditing * | 1.65 | −0.18 | 48.44 | 1.09 | −0.04 | 30.51 | 2.25 | −0.17 | 59.74 | |
SlideShow | 1.48 | −0.18 | 54.78 | 0.71 | −0.06 | 31.02 | 2.09 | −0.2 | 66.58 | |
Training average | 1.2 | −0.11 | 56.96 | - | - | - | - | - | - | |
Test average | 1.21 | −0.11 | 57.21 | - | - | - | - | - | - | |
Average | 1.21 | −0.11 | 57.14 | 0.6 | −0.03 | 27.53 | 1.62 | −0.13 | 66.31 |
Class | Sequence | FCPD | FIMP | Overall | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BDBR | BDPSNR | BDBR | BDPSNR | BDBR | BDPSNR | |||||
(%) | (dB) | (%) | (%) | (dB) | (%) | (%) | (dB) | (%) | ||
A1 | Tango2 * | 0.57 | −0.05 | 62.28 | 0.35 | −0.03 | 23.12 | 0.92 | −0.07 | 69.5 |
FoodMarket | 0.58 | −0.07 | 62.34 | 1.01 | −0.05 | 21.22 | 1.49 | −0.08 | 67.65 | |
Campfire | 1.19 | −0.3 | 58.90 | 0.79 | −0.02 | 27.23 | 1.86 | −0.13 | 70.06 | |
Drums | 1.32 | −0.16 | 60.60 | 0.82 | −0.03 | 28.17 | 1.73 | −0.14 | 68.28 | |
A2 | Catrobot1 * | 1.09 | −0.06 | 59.86 | 0.43 | −0.04 | 27.24 | 1.38 | −0.08 | 67.56 |
DaylightRoad2 | 1.10 | −0.10 | 66.30 | 0.8 | −0.03 | 29.24 | 1.46 | −0.08 | 74.9 | |
ParkRuning3 | 0.73 | −0.07 | 56.22 | 0.59 | −0.03 | 22.31 | 1.28 | −0.06 | 69.11 | |
TrafficFlow | 0.61 | −0.06 | 54.73 | 0.47 | −0.02 | 20.89 | 1.23 | −0.05 | 66.82 | |
B | BasketballDrive | 1.93 | −0.11 | 64.46 | 0.8 | −0.03 | 25.34 | 2.42 | −0.08 | 70.51 |
BQTerrace * | 1.48 | −0.13 | 66.05 | 0.85 | −0.05 | 30.35 | 1.97 | −0.15 | 75.22 | |
Cactus | 1.48 | −0.14 | 66.16 | 0.52 | −0.04 | 27.44 | 1.71 | −0.13 | 76.92 | |
Kimono | 1.19 | −0.07 | 69.59 | 0.25 | −0.03 | 24.41 | 1.45 | −0.04 | 74.44 | |
ParkScene | 1.93 | −0.21 | 66.04 | 0.3 | −0.03 | 29.57 | 1.92 | −0.19 | 74.64 | |
MarketPlace | 1.38 | −0.15 | 64.66 | 0.71 | −0.03 | 27.88 | 1.78 | −0.13 | 69.34 | |
RitualDance | 1.47 | −0.14 | 64.21 | 0.79 | −0.03 | 25.66 | 1.84 | −0.13 | 66.28 | |
C | BasketballDrill | 1.13 | −0.24 | 55.93 | 0.41 | −0.05 | 31.34 | 1.49 | −0.25 | 67.89 |
BQMall | 1.24 | −0.14 | 63.93 | 0.45 | −0.05 | 29.45 | 1.41 | −0.14 | 72.07 | |
PartyScene * | 1.37 | −0.17 | 54 | 0.83 | −0.03 | 36.39 | 2.13 | −0.15 | 68.26 | |
RaceHorsesC | 0.63 | −0.19 | 55.52 | 0.57 | −0.06 | 34.28 | 1.27 | −0.23 | 66.36 | |
D | BasketballPass | 1.39 | −0.20 | 48.75 | 0.64 | −0.03 | 32.38 | 1.62 | −0.09 | 66.72 |
BlowingBubbles * | 0.91 | −0.11 | 55.85 | 0.54 | −0.03 | 31.44 | 1.14 | −0.17 | 67.12 | |
BQSquare | 0.63 | −0.11 | 52.41 | 0.66 | −0.07 | 34.67 | 1.07 | −0.23 | 64.78 | |
RaceHorses | 0.52 | −0.07 | 43.88 | 0.36 | −0.09 | 33.43 | 1.04 | −0.15 | 59.32 | |
E | FourPeople * | 1.79 | −0.14 | 64.6 | 0.42 | −0.09 | 27.61 | 2.15 | −0.19 | 72.81 |
Johnny | 1.21 | −0.20 | 66.98 | 0.96 | −0.07 | 25.52 | 2.71 | −0.13 | 74.59 | |
KristenAndSara | 2.23 | −0.17 | 68.27 | 0.4 | −0.08 | 26.43 | 2.31 | −0.2 | 75.41 | |
F | BasketballDrillText | 1.67 | −0.18 | 58.00 | 1.1 | −0.07 | 27.57 | 2.49 | −0.19 | 67.98 |
ChinaSpeed | 2.28 | −0.22 | 56.99 | 0.85 | −0.05 | 36.78 | 2.34 | −0.2 | 68.28 | |
SlideEditing * | 1.71 | −0.19 | 50.51 | 1.19 | −0.05 | 32.82 | 2.28 | −0.19 | 61.91 | |
SlideShow | 1.59 | −0.22 | 57.57 | 0.79 | −0.07 | 33.2 | 2.12 | −0.21 | 69.34 | |
Training average | 1.27 | −0.12 | 59.02 | - | - | - | - | - | - | |
Test average | 1.32 | −0.15 | 60.11 | - | - | - | - | - | - | |
Average | 1.31 | −0.14 | 59.86 | 0.66 | −0.05 | 28.78 | 1.73 | −0.14 | 69.47 |
Partition Type | QP 22 | QP 27 | QP 32 | QP37 |
---|---|---|---|---|
NS | 5,079,696 | 3,492,693 | 3,243,862 | 2,353,272 |
QT | 771,644 | 505,940 | 442,246 | 302,200 |
BH | 2,444,758 | 1,480,714 | 1,178,438 | 744,162 |
BV | 2,348,766 | 1,433,616 | 1,147,124 | 723,560 |
TH | 595,808 | 366,073 | 349,944 | 242,860 |
TV | 586,848 | 380,857 | 353,132 | 241,424 |
Class | Sequence | Ni 2022 [14] (VTM11.0) | Wang 2023 [21] (VTM10.0) | Li 2024 [22] (VTM7.0) | Ours (VTM7.0) | Ours (VTM23.1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BDBR | TS | BDBR | TS | BDBR | TS | BDBR | TS | BDBR | TS | |||||||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |||||||
A1 | Tango2 | 0.58 | 47.35 | 81.68 | / | / | / | 0.99 | 56.85 | 57.42 | 0.67 | 66.84 | 99.76 | 0.92 | 69.5 | 75.54 |
FoodMarket | 0.52 | 50.29 | 96.71 | 1.14 | 54.85 | 48.11 | 0.97 | 53.53 | 55.19 | 1.23 | 64.68 | 52.59 | 1.49 | 67.65 | 45.40 | |
Campfire | 0.26 | 43.58 | 167.62 | 1.25 | 57.16 | 45.73 | 0.86 | 49.67 | 57.76 | 1.62 | 65.95 | 40.71 | 1.86 | 70.06 | 37.67 | |
Drums | / | / | / | 1.37 | 58.04 | 42,36 | / | / | / | / | / | / | 1.73 | 68.28 | 39.47 | |
A2 | Catrobot1 | 0.37 | 41.43 | 111.97 | / | / | / | 1.12 | 55.99 | 49.99 | 1.25 | 64.58 | 51.66 | 1.38 | 67.56 | 48.96 |
DaylightRoad2 | 0.26 | 33.29 | 128.04 | 1.23 | 52.29 | 42.51 | 0.97 | 54.53 | 56.22 | 1.44 | 71.88 | 49.92 | 1.46 | 74.9 | 51.30 | |
ParkRuning3 | 0.27 | 41.57 | 153.96 | 1.31 | 55.45 | 42.32 | 1.09 | 53.57 | 49.15 | 0.99 | 59.67 | 60.27 | 1.28 | 69.11 | 53.99 | |
TrafficFlow | / | / | / | 0.92 | 54.39 | 59.12 | / | / | / | / | / | / | 1.23 | 66.82 | 54.33 | |
B | BasketballDrive | 0.36 | 44.73 | 124.25 | / | / | / | / | / | / | 2.39 | 67.87 | 28.40 | 2.42 | 70.51 | 29.14 |
BQTerrace | 0.3 | 40.05 | 133.50 | 1.03 | 54.98 | 53.38 | 1.29 | 52.41 | 40.63 | 1.92 | 70.08 | 36.5 | 1.97 | 75.22 | 38.18 | |
Cactus | 0.4 | 42 | 105 | 1.28 | 56.81 | 44.38 | / | / | / | 1.69 | 69.43 | 41.08 | 1.71 | 76.92 | 44.98 | |
Kimono | 0.34 | 43.03 | 126.56 | 1.36 | 57.47 | 42.26 | 1.22 | 57.56 | 47.18 | 1.1 | 72.25 | 65.68 | 1.45 | 74.44 | 51.34 | |
ParkScene | 0.37 | 40 | 108.11 | / | / | / | 0.95 | 59.22 | 62.34 | 1.89 | 72.19 | 38.20 | 1.92 | 74.64 | 38.88 | |
MarketPlace | 0.58 | 40.41 | 69.67 | 0.91 | 51.89 | 57.02 | / | / | / | / | / | / | 1.78 | 69.34 | 38.96 | |
RitualDance | 0.43 | 42.55 | 98.95 | / | / | / | / | / | / | / | / | / | 1.84 | 66.28 | 36.02 | |
C | BasketballDrill | 1.16 | 47.88 | 41.28 | 0.76 | 49.38 | 64.97 | 0.94 | 50.68 | 53.91 | 1.22 | 65.63 | 53.80 | 1.49 | 67.89 | 45.56 |
BQMall | 0.52 | 45.43 | 87.37 | 1.04 | 50.66 | 48.71 | / | / | / | 1.39 | 69.26 | 49.83 | 1.41 | 72.07 | 51.11 | |
PartyScene | 0.32 | 41.5 | 129.69 | 0.85 | 55.92 | 65.79 | 0.95 | 53.66 | 56.48 | 2.09 | 65.64 | 31.41 | 2.13 | 68.26 | 32.05 | |
RaceHorsesC | 0.29 | 44.9 | 154.83 | 1.09 | 56.24 | 51.6 | 0.91 | 53.75 | 59.07 | 0.93 | 64.16 | 69 | 1.27 | 66.36 | 52.25 | |
D | BasketballPass | 0.44 | 42.02 | 95.5 | 0.94 | 52.43 | 55.78 | / | / | / | 1.6 | 59.74 | 37.34 | 1.62 | 66.22 | 40.88 |
BlowingBubbles | 0.39 | 40.66 | 104.26 | 0.93 | 53.61 | 57.65 | 0.91 | 54.88 | 60.31 | 1.09 | 63.09 | 57.88 | 1.14 | 67.12 | 58.88 | |
BQSquare | 0.36 | 40.3 | 111.94 | 0.86 | 53.28 | 61.95 | 1.16 | 55.55 | 47.89 | 0.93 | 62.11 | 66.78 | 1.07 | 64.78 | 60.54 | |
RaceHorses | 0.37 | 41.54 | 112.27 | 1.07 | 57.39 | 53.63 | 1.01 | 49.45 | 48.96 | 0.62 | 56.29 | 90.79 | 1.04 | 59.32 | 57.04 | |
E | FourPeople | 0.62 | 39.57 | 63.82 | / | / | / | 0.89 | 58.72 | 65.98 | 2.09 | 70.57 | 33.77 | 2.15 | 72.81 | 33.87 |
Johnny | 0.62 | 44.16 | 71.23 | / | / | / | 0.96 | 59.33 | 61.80 | 2.67 | 72.24 | 27.06 | 2.71 | 74.59 | 27.52 | |
KristenAndSara | 0.55 | 41.19 | 74.89 | / | / | / | 1.23 | 57.62 | 46.85 | 2.29 | 72.98 | 31.87 | 2.31 | 75.41 | 32.65 | |
Average | 0.44 | 42.47 | 96.52 | 1.07 | 54.4 | 50.84 | 1.02 | 54.83 | 53.75 | 1.51 | 66.69 | 44.17 | 1.65 | 69.85 | 42.33 |
Class | Sequence | Wu 2022 [27] (VTM7.0) | Chen 2023 [28] (VTM14.0) | Zan 2023 [32] (VTM7.0) | Ours (VTM7.0) | Ours (VTM23.1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BDBR | TS | BDBR | TS | BDBR | TS | BDBR | TS | BDBR | TS | |||||||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |||||||
A1 | Tango2 | 1.52 | 66.71 | 43.89 | 1.98 | 52.45 | 26.49 | / | / | / | 0.67 | 66.84 | 99.76 | 0.92 | 69.5 | 75.54 |
FoodMarket | 1.57 | 50.97 | 32.46 | 1.18 | 52.91 | 44.84 | / | / | / | 1.23 | 64.68 | 52.59 | 1.49 | 67.65 | 45.40 | |
Campfire | 2.20 | 64.08 | 29.13 | 1.45 | 59.86 | 41.28 | / | / | / | 1.62 | 65.95 | 14.71 | 1.86 | 70.06 | 37.67 | |
Drums | / | / | / | / | / | / | / | / | / | / | / | / | 1.73 | 68.28 | 39.47 | |
Average (A1) | 1.76 | 60.59 | 34.43 | 1.54 | 55.07 | 35.76 | 1.89 | 63.97 | 33.85 | 1.17 | 65.82 | 56.26 | 1.50 | 68.87 | 45.91 | |
A2 | Catrobot1 | 2.37 | 65.4 | 27.59 | 1.75 | 43.27 | 24.73 | / | / | / | 1.25 | 64.58 | 51.66 | 1.38 | 67.56 | 48.96 |
DaylightRoad2 | 1.8 | 71.2 | 39.56 | 1.67 | 50.49 | 30.23 | / | / | / | 1.44 | 71.88 | 49.92 | 1.46 | 74.9 | 51.30 | |
ParkRuning3 | 1.26 | 58.94 | 46.78 | 0.79 | 48.37 | 61.23 | / | / | / | 0.99 | 59.67 | 60.27 | 1.28 | 69.11 | 53.99 | |
TrafficFlow | / | / | / | / | / | / | / | / | / | / | / | / | 1.23 | 66.82 | 54.33 | |
Average (A2) | 1.81 | 65.18 | 36.01 | 1.40 | 47.38 | 33.84 | 2.00 | 68.82 | 34.41 | 1.23 | 65.38 | 53.15 | 1.34 | 69.60 | 51.94 | |
B | BasketballDrive | 1.32 | 76.68 | 58.09 | 2.22 | 50.38 | 22.69 | / | / | / | 2.39 | 67.87 | 28.40 | 2.42 | 70.51 | 29.14 |
BQTerrace | 2.98 | 62.57 | 21.00 | 2.61 | 47.38 | 18.15 | / | / | / | 1.92 | 70.08 | 36.50 | 1.97 | 75.22 | 38.18 | |
Cactus | 2.02 | 70.67 | 34.99 | 2.03 | 46.57 | 22.94 | / | / | / | 1.69 | 69.43 | 41.08 | 1.71 | 76.92 | 44.98 | |
Kimono | 2.09 | 74.18 | 35.49 | / | / | / | / | / | / | 1.1 | 72.25 | 65.68 | 1.45 | 74.44 | 51.34 | |
ParkScene | 2.16 | 65 | 30.09 | / | / | / | / | / | / | 1.89 | 72.19 | 38.20 | 1.92 | 74.64 | 38.88 | |
MarketPlace | / | / | / | 1.25 | 49.22 | 39.38 | / | / | / | / | / | / | 1.78 | 69.34 | 38.96 | |
RitualDance | / | / | / | 1.83 | 49.82 | 27.22 | / | / | / | / | / | / | 1.84 | 66.28 | 36.02 | |
Average (B) | 2.11 | 69.82 | 33.09 | 1.99 | 48.67 | 24.46 | 2.35 | 73.33 | 31.20 | 1.80 | 70.36 | 39.09 | 1.87 | 72.48 | 38.76 | |
C | BasketballDrill | 3.65 | 57.35 | 15.71 | 3.29 | 50.38 | 15.31 | / | / | / | 1.22 | 65.63 | 53.80 | 1.49 | 67.89 | 45.56 |
BQMall | 2.33 | 65.65 | 28.18 | 2.47 | 58.55 | 23.70 | / | / | / | 1.39 | 69.26 | 49.83 | 1.41 | 72.07 | 51.11 | |
PartyScene | 2.07 | 59.27 | 28.63 | 1.85 | 49.33 | 26.66 | / | / | / | 2.09 | 65.64 | 31.41 | 2.13 | 68.26 | 32.05 | |
RaceHorsesC | 1.52 | 64.92 | 42.71 | 1.73 | 50.40 | 29.13 | / | / | / | 0.93 | 64.16 | 68.99 | 1.27 | 66.36 | 52.25 | |
Average (C) | 2.39 | 61.80 | 25.86 | 2.34 | 52.17 | 22.29 | 2.50 | 67.06 | 26.82 | 1.41 | 66.17 | 46.93 | 1.58 | 68.65 | 43.45 | |
D | BasketballPass | 2.33 | 59.25 | 25.43 | 2.22 | 51.84 | 23.35 | / | / | / | 1.6 | 59.74 | 37.34 | 1.62 | 66.22 | 40.88 |
BlowingBubbles | 3.15 | 54.63 | 17.34 | 1.67 | 53.27 | 31.90 | / | / | / | 1.09 | 63.09 | 57.88 | 1.14 | 67.12 | 58.88 | |
BQSquare | 1.95 | 59.64 | 30.58 | 2.91 | 55.85 | 19.19 | / | / | / | 0.93 | 62.11 | 66.78 | 1.07 | 64.78 | 60.54 | |
RaceHorses | 2.68 | 60.96 | 22.75 | 1.93 | 55.08 | 28.54 | / | / | / | 0.62 | 56.29 | 90.79 | 1.04 | 59.32 | 57.04 | |
Average (D) | 2.53 | 58.62 | 23.17 | 2.18 | 54.01 | 24.78 | 2.16 | 64.58 | 29.90 | 1.06 | 60.31 | 56.90 | 1.22 | 64.36 | 52.75 | |
E | FourPeople | 2.80 | 70.00 | 25.00 | 2.68 | 57.10 | 21.31 | / | / | / | 2.09 | 70.57 | 33.77 | 2.15 | 72.81 | 33.87 |
Johnny | 2.82 | 68.11 | 24.15 | 2.93 | 56.60 | 19.32 | / | / | / | 2.67 | 72.24 | 27.06 | 2.71 | 74.59 | 27.52 | |
KristenAndSara | 2.88 | 67.92 | 23.58 | 3.00 | 50.21 | 16.74 | / | / | / | 2.29 | 72.98 | 31.87 | 2.31 | 75.41 | 32.65 | |
Average (E) | 2.83 | 68.68 | 24.27 | 2.87 | 54.64 | 19.04 | 3.11 | 73.75 | 23.71 | 2.35 | 71.93 | 30.61 | 2.39 | 74.27 | 31.08 | |
Average | 2.19 | 65.53 | 29.92 | 2.07 | 51.79 | 25.02 | 2.33 | 68.76 | 29.51 | 1.51 | 66.69 | 44.17 | 1.65 | 69.85 | 42.33 |
Features | Proportion | |
---|---|---|
Block Information | 0.17 | 0.2 |
Texture Complexity | 0.1 | 0.11 |
Gradient Information | 0.16 | 0.16 |
Sub-CUs Complexity difference | 0.39 | 0.33 |
Context Information | 0.18 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cheng, B.; Zhu, H.; Qin, H.; Deng, L.; Luo, L. Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications. Electronics 2024, 13, 2150. https://doi.org/10.3390/electronics13112150
Chen L, Cheng B, Zhu H, Qin H, Deng L, Luo L. Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications. Electronics. 2024; 13(11):2150. https://doi.org/10.3390/electronics13112150
Chicago/Turabian StyleChen, Lei, Baoping Cheng, Haotian Zhu, Haowen Qin, Lihua Deng, and Lei Luo. 2024. "Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications" Electronics 13, no. 11: 2150. https://doi.org/10.3390/electronics13112150
APA StyleChen, L., Cheng, B., Zhu, H., Qin, H., Deng, L., & Luo, L. (2024). Fast Versatile Video Coding (VVC) Intra Coding for Power-Constrained Applications. Electronics, 13(11), 2150. https://doi.org/10.3390/electronics13112150