Methods and Challenges of Cryptography-Based Privacy-Protection Algorithms for Vehicular Networks
Abstract
:1. Definition
2. Current Privacy-Protection Methods
2.1. The Entity That Needs to Be Protected
2.1.1. User Privacy Protection
2.1.2. Vehicle Data Protection
2.1.3. Manufacturer and Service Provider Protection
2.2. The Method
2.2.1. Common Cryptography Methods
2.2.2. Advanced Methods Derived from Cryptography
Blockchain
Federated Learning
Differential Privacy
2.3. The Different Disclosure Entities
2.3.1. Internal Threats
2.3.2. External Threats
2.3.3. Third-Party Partners
3. Challenges
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sağlam, E.T.; Bahtiyar, Ş. A survey: Security and privacy in 5G vehicular networks. In Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 108–112. [Google Scholar]
- Corser, G.P.; Fu, H.; Banihani, A. Evaluating location privacy in vehicular communications and applications. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2658–2667. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Li, J.; Li, Y. Network Voronoi Diagram on uncertain objects for nearest neighbor queries. Inf. Sci. 2015, 301, 241–261. [Google Scholar] [CrossRef]
- Peng, T.; Liu, Q.; Meng, D.; Wang, G. Collaborative trajectory privacy preserving scheme in location-based services. Inf. Sci. 2017, 387, 165–179. [Google Scholar] [CrossRef]
- Talat, H.; Nomani, T.; Mohsin, M.; Sattar, S. A survey on location privacy techniques deployed in vehicular networks. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 604–613. [Google Scholar]
- LaMarca, A.; Langheinrich, M.; Truong, K.N. Pervasive Computing: 5th International Conference, PERVASIVE 2007, Toronto, Canada, May 13–16, 2007, Proceedings; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4480. [Google Scholar]
- Wu, X.; Xu, X.; Bilal, M. Toward privacy protection composition framework on internet of vehicles. IEEE Consum. Electron. Mag. 2021, 11, 32–38. [Google Scholar] [CrossRef]
- Li, Y.; Tao, X.; Zhang, X.; Wang, M.; Wang, S. Break the data barriers while keeping privacy: A graph differential privacy method. IEEE Internet Things J. 2022, 10, 3840–3850. [Google Scholar] [CrossRef]
- Huang, J.; Fang, D.; Qian, Y.; Hu, R.Q. Recent advances and challenges in security and privacy for V2X communications. IEEE Open J. Veh. Technol. 2020, 1, 244–266. [Google Scholar] [CrossRef]
- Engoulou, R.G.; Bellaïche, M.; Pierre, S.; Quintero, A. VANET security surveys. Comput. Commun. 2014, 44, 1–13. [Google Scholar] [CrossRef]
- Hataba, M.; Sherif, A.; Mahmoud, M.; Abdallah, M.; Alasmary, W. Security and privacy issues in autonomous vehicles: A layer-based survey. IEEE Open J. Commun. Soc. 2022, 3, 811–829. [Google Scholar] [CrossRef]
- Hasrouny, H.; Samhat, A.E.; Bassil, C.; Laouiti, A. VANet security challenges and solutions: A survey. Veh. Commun. 2017, 7, 7–20. [Google Scholar] [CrossRef]
- Mejri, M.N.; Ben-Othman, J.; Hamdi, M. Survey on VANET security challenges and possible cryptographic solutions. Veh. Commun. 2014, 1, 53–66. [Google Scholar] [CrossRef]
- Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10, pp. 10–5555. [Google Scholar]
- Xu, C.; Wu, H.; Liu, H.; Gu, W.; Li, Y.; Cao, D. Blockchain-oriented privacy protection of sensitive data in the internet of vehicles. IEEE Trans. Intell. Veh. 2022, 8, 1057–1067. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Xu, J.; Shen, M. Research on Data Privacy Protection of Internet of Vehicles Based on Differential Privacy. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012007. [Google Scholar] [CrossRef]
- Chen, W.; Wu, H.; Chen, X.; Chen, J. A review of research on privacy protection of internet of vehicles based on blockchain. J. Sens. Actuator Netw. 2022, 11, 86. [Google Scholar] [CrossRef]
- Chen, H.; Laine, K.; Player, R. Simple encrypted arithmetic library-SEAL v2. 1. In Proceedings of the Financial Cryptography and Data Security: FC 2017 InternationalWorkshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, 7 April 2017; Revised Selected Papers 21. Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–18. [Google Scholar]
- Hallman, R.A.; Laine, K.; Dai, W.; Gama, N.; Malozemoff, A.J.; Polyakov, Y.; Carpov, S. Building applications with homomorphic encryption. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 2160–2162. [Google Scholar]
- Di Matteo, S.; Gerfo, M.L.; Saponara, S. VLSI Design and FPGA implementation of an NTT hardware accelerator for Homomorphic seal-embedded library. IEEE Access 2023, 11, 72498–72508. [Google Scholar] [CrossRef]
- Garay, J.A.; Gennaro, R. Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17–21, 2014, Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8617. [Google Scholar]
- 802.1AC-2016/Cor 1-2018; IEEE Standard for Local and Metropolitan Area Networks–Media Access Control (MAC) Service Definition-Corrigendum 1: Logical Link Control (LLC) Encapsulation EtherType. IEEE: Piscataway, NJ, USA, 2018.
- Dworkin, M.J. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC; Special Publication (NIST SP); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Dworkin, M.; Barker, E.; Nechvatal, J.; Foti, J.; Bassham, L.; Roback, E.; Dray, J. Advanced Encryption Standard (AES); Federal Inf. Process. Stds. (NIST FIPS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001; Volume 11. [Google Scholar]
- Carnevale, B.; Falaschi, F.; Crocetti, L.; Hunjan, H.; Bisase, S.; Fanucci, L. An implementation of the 802.1 AE MAC Security Standard for in-car networks. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 24–28. [Google Scholar]
- Liu, T.J.; Chen, C.W. Wireless access in vehicular environments. In Telematics Communication Technologies and Vehicular Networks: Wireless Architectures and Applications; IGI Global: Hershey, PA, USA, 2010; pp. 90–107. [Google Scholar]
- ITS Committee. IEEE Standard for Wireless Access in Vehicular Environments-Security Services for Applications and Management Messages; IEEE Vehicular Technology Society: Washington, DC, USA, 2013; Volume 1609. [Google Scholar]
- Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3; Technical Report; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2018. [Google Scholar]
- Pfeiffer, O. Implementing Scalable Can Security with Cancrypt; Embedded Systems Academy: Sunnyvale, CA, USA, 2017. [Google Scholar]
- Feng, X.; Wang, L. S2PD: A selective sharing scheme for privacy data in vehicular social networks. IEEE Access 2018, 6, 55139–55148. [Google Scholar] [CrossRef]
- Guo, N.; Ma, L.; Gao, T. Independent mix zone for location privacy in vehicular networks. IEEE Access 2018, 6, 16842–16850. [Google Scholar] [CrossRef]
- Tyagi, P.; Dembla, D. Investigating the security threats in vehicular ad hoc networks (VANETs): Towards security engineering for safer on-road transportation. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 2084–2090. [Google Scholar]
- Li, X.; Liu, J.; Yao, Q.; Ma, J. Efficient and consistent key extraction based on received signal strength for vehicular ad hoc networks. IEEE Access 2017, 5, 5281–5291. [Google Scholar] [CrossRef]
- Huang, X.; Yu, R.; Pan, M.; Shu, L. Secure roadside unit hotspot against eavesdropping based traffic analysis in edge computing based internet of vehicles. IEEE Access 2018, 6, 62371–62383. [Google Scholar] [CrossRef]
- Lu, R.; Lin, X.; Zhu, H.; Ho, P.H.; Shen, X. ECPP: Efficient conditional privacy preservation protocol for secure vehicular communications. In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008; pp. 1229–1237. [Google Scholar]
- Zhang, C.; Lu, R.; Lin, X.; Ho, P.H.; Shen, X. An efficient identity-based batch verification scheme for vehicular sensor networks. In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008; pp. 246–250. [Google Scholar]
- Raya, M.; Papadimitratos, P.; Gligor, V.D.; Hubaux, J.P. On data-centric trust establishment in ephemeral ad hoc networks. In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008; pp. 1238–1246. [Google Scholar]
- Li, H.; Pei, L.; Liao, D.; Sun, G.; Xu, D. Blockchain meets VANET: An architecture for identity and location privacy protection in VANET. Peer-Netw. Appl. 2019, 12, 1178–1193. [Google Scholar] [CrossRef]
- Nadeem, S.; Rizwan, M.; Ahmad, F.; Manzoor, J. Securing cognitive radio vehicular ad hoc network with fog node based distributed blockchain cloud architecture. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 288–295. [Google Scholar] [CrossRef]
- Lei, K.; Fang, J.; Zhang, Q.; Lou, J.; Du, M.; Huang, J.; Wang, J.; Xu, K. Blockchain-based cache poisoning security protection and privacy-aware access control in NDN vehicular edge computing networks. J. Grid Comput. 2020, 18, 593–613. [Google Scholar] [CrossRef]
- Long, Y.; Chen, Y.; Ren, W.; Dou, H.; Xiong, N.N. Depet: A decentralized privacy-preserving energy trading scheme for vehicular energy network via blockchain and k-anonymity. IEEE Access 2020, 8, 192587–192596. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Wang, X.; Ning, Z.; Rodrigues, J.J. Secure crowdsensing in 5G internet of vehicles: When deep reinforcement learning meets blockchain. IEEE Consum. Electron. Mag. 2020, 10, 72–81. [Google Scholar] [CrossRef]
- Chulerttiyawong, D.; Jamalipour, A. A blockchain assisted vehicular pseudonym issuance and management system for conditional privacy enhancement. IEEE Access 2021, 9, 127305–127319. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Philip, S.Y. Privacy-preserving deep learning model for decentralized vanets using fully homomorphic encryption and blockchain. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11633–11642. [Google Scholar] [CrossRef]
- Yeh, L.Y.; Shen, N.X.; Hwang, R.H. Blockchain-based privacy-preserving and sustainable data query service over 5G-VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15909–15921. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Q.; Zou, Q.; Zhang, Y.; Chen, Y. Privacy-preserving collaborative deep learning with unreliable participants. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1486–1500. [Google Scholar] [CrossRef]
- Han, X.; Tian, D.; Duan, X.; Sheng, Z.; Zhou, J.; Leung, V.C. A Dual Mode Privacy-Preserving Scheme Enabled Secure and Anonymous for Edge Computing Assisted Internet of Vehicle Networks. In Proceedings of the 11th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, Alicante, Spain, 22–26 November 2021; pp. 65–70. [Google Scholar]
- Zhou, X.; Liang, W.; She, J.; Yan, Z.; Kevin, I.; Wang, K. Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5308–5317. [Google Scholar] [CrossRef]
- Fang, H.; Qian, Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 2021, 13, 94. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, Z.; Tian, Y.; Cai, Z.; Li, F. Electric vehicle charging load forecasting based on federal learning. In Proceedings of the International Conference on Electronic Information Engineering and Computer Communication (EIECC 2021), Changchun, China, 23–26 May 2021; Volume 12172, pp. 229–234. [Google Scholar]
- Li, Y.; Zhang, P.; Wang, Y. The location privacy protection of electric vehicles with differential privacy in V2G networks. Energies 2018, 11, 2625. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Shen, S.; Zhu, T.; Xiong, P. An optimized differential privacy scheme with reinforcement learning in VANET. Comput. Secur. 2021, 110, 102446. [Google Scholar] [CrossRef]
- Chen, J.; Ma, H.; Zhao, D.; Liu, L. Correlated differential privacy protection for mobile crowdsensing. IEEE Trans. Big Data 2017, 7, 784–795. [Google Scholar] [CrossRef]
- Lin, X.; Sun, X.; Ho, P.H.; Shen, X. GSIS: A secure and privacy-preserving protocol for vehicular communications. IEEE Trans. Veh. Technol. 2007, 56, 3442–3456. [Google Scholar]
- Xu, L.; Chen, L.; Gao, Z.; Carranco, L.; Fan, X.; Shah, N.; Diallo, N.; Shi, W. Supporting blockchain-based cryptocurrency mobile payment with smart devices. IEEE Consum. Electron. Mag. 2020, 9, 26–33. [Google Scholar] [CrossRef]
- Benarous, L.; Boudjit, S. Security and privacy evaluation methods and metrics in vehicular networks. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 1–6. [Google Scholar]
- Jiang, W.; Chen, M.; Tao, J. Federated learning with blockchain for privacy-preserving data sharing in Internet of vehicles. China Commun. 2023, 20, 69–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bi, R.; Jiang, N.; Li, F.; Wang, M.; Jing, X. Methods and Challenges of Cryptography-Based Privacy-Protection Algorithms for Vehicular Networks. Electronics 2024, 13, 2372. https://doi.org/10.3390/electronics13122372
Li Y, Bi R, Jiang N, Li F, Wang M, Jing X. Methods and Challenges of Cryptography-Based Privacy-Protection Algorithms for Vehicular Networks. Electronics. 2024; 13(12):2372. https://doi.org/10.3390/electronics13122372
Chicago/Turabian StyleLi, Yijing, Ran Bi, Nan Jiang, Fengqiu Li, Mingsi Wang, and Xiangping Jing. 2024. "Methods and Challenges of Cryptography-Based Privacy-Protection Algorithms for Vehicular Networks" Electronics 13, no. 12: 2372. https://doi.org/10.3390/electronics13122372
APA StyleLi, Y., Bi, R., Jiang, N., Li, F., Wang, M., & Jing, X. (2024). Methods and Challenges of Cryptography-Based Privacy-Protection Algorithms for Vehicular Networks. Electronics, 13(12), 2372. https://doi.org/10.3390/electronics13122372