Light Field Spatial Super-Resolution via View Interaction and the Fusing of Hierarchical Features
Abstract
:1. Introduction
- (1)
- We propose residual channel-reconstruction blocks (RCBs) to reduce channel redundancy between features and effectively perform feature extraction in feature extraction blocks. In addition, we use residual atrous spatial pyramid pooling (ResASPP) to enlarge the receptive field and capture information at several scales.
- (2)
- We introduce InterU and IntraU to take full advantage of the complementary information between all SAIs. At the same time, we further reduce redundancy in the spatial domain by introducing a spatial reconstruction unit (SRU) in view interaction blocks. Our multi-view aggregation block (MAB) is a long-term correlation model based on extended 3D convolution, which further improves the performance of SR networks.
- (3)
- We effectively fuse shallow features and deep features to retain the consistency of the reconstructed LF structure to obtain high reconstruction accuracy in the reconstruction block. We also perform a number of experiments to demonstrate that our network can achieve state-of-the-art performance beyond several existing excellent methods. Through a complete ablation study, we discuss the importance of the components proposed in this article to give an insight into effective SSR.
2. Related Work
2.1. Light Field Representation
2.2. Light Field Super-Resolution
3. Proposed Method
3.1. Overall Network Framework
3.2. Feature Extraction Block (FEB)
3.3. View Interaction Block
3.4. Reconstruction Block
3.5. Loss Function
4. Experiments
4.1. Datasets and Implementation Details
4.2. Comparison with State-of-the-Art Methods
4.2.1. Quantitative Results
4.2.2. Qualitative Results
4.2.3. Parameters and FLOPs
4.3. Ablation Study and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Jiang, G.; Jiang, Z.; Yu, M.; Ho, Y.-S. Deep Light Field Super-Resolution Using Frequency Domain Analysis and Semantic Prior. IEEE Trans. Multimed. 2022, 24, 3722–3737. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Guo, Y.; Xiao, C.; An, W. Selective Light Field Refocusing for Camera Arrays Using Bokeh Rendering and Superresolution. IEEE Signal Process. Lett. 2019, 26, 204–208. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Z.; Lin, Y. Removing foreground occlusions in light field using micro-lens dynamic filter. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada, 19–27 August 2021; pp. 1302–1308. [Google Scholar]
- Liu, N.; Zhao, W.; Zhang, D.; Han, J.; Shao, L. Light field saliency detection with dual local graph learning and reciprocative guidance. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4712–4721. [Google Scholar]
- Chuchvara, A.; Barsi, A.; Gotchev, A. Fast and accurate depth estimation from sparse light fields. IEEE Trans. Image Process. 2020, 29, 2492–2506. [Google Scholar] [CrossRef]
- Yu, J. A Light-Field Journey to Virtual Reality. IEEE MultiMedia 2017, 24, 104–112. [Google Scholar] [CrossRef]
- Alain, M.; Smolic, A. Light Field Super-Resolution via LFBM5D Sparse Coding. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2501–2505. [Google Scholar]
- Rossi, M.; Frossard, P. Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization. IEEE Trans. Image Process. 2018, 27, 4207–4218. [Google Scholar] [CrossRef]
- Ghassab, V.K.; Bouguila, N. Light Field Super-Resolution Using Edge-Preserved Graph-Based Regularization. IEEE Trans. Multimed. 2020, 22, 1447–1457. [Google Scholar] [CrossRef]
- Johannsen, O.; Honauer, K.; Goldluecke, B.; Alperovich, A.; Battisti, F.; Bok, Y.; Brizzi, M.; Carli, M.; Choe, G.; Diebold, M.; et al. A taxonomy and evaluation of dense light field depth estimation algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1795–1812. [Google Scholar]
- Jin, J.; Hou, J.; Chen, J.; Kwong, S. Light Field Spatial Super-Resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2257–2266. [Google Scholar]
- Zhang, S.; Lin, Y.; Sheng, H. Residual Networks for Light Field Image Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11038–11047. [Google Scholar]
- Zhou, L.; Gao, W.; Li, G.; Yuan, H.; Zhao, T.; Yue, G. Disentangled Feature Distillation for Light Field Super-Resolution with Degradations. In Proceedings of the 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Brisbane, Australia, 10–14 July 2023; pp. 116–121. [Google Scholar]
- Wang, Y.; Wang, L.; Yang, J.; An, W.; Yu, J.; Guo, Y. Spatial-Angular Interaction for Light Field Image Super-Resolution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXIII 16; Springer: Cham, Switzerland, 2020; pp. 290–308. [Google Scholar]
- Wang, Y.; Yang, J.; Wang, L.; Ying, X.; Wu, T.; An, W.; Guo, Y. Light Field Image Super-Resolution Using Deformable Convolution. IEEE Trans. Image Process. 2021, 30, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Xiong, Z.; Liu, D. Light Field Super-Resolution by Jointly Exploiting Internal and External Similarities. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2604–2616. [Google Scholar] [CrossRef]
- Park, H.-J.; Shin, J.; Kim, H.; Koh, Y.J. Light Field Image Super-Resolution Based on Multilevel Structures. IEEE Access 2022, 10, 59135–59144. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liang, Z.; Yang, J.; An, W.; Guo, Y. Occlusion-Aware Cost Constructor for Light Field Depth Estimation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 19777–19786. [Google Scholar]
- Wafa, A.; Pourazad, M.T.; Nasiopoulos, P. A Deep Learning Based Spatial Super-Resolution Approach for Light Field Content. IEEE Access 2021, 9, 2080–2092. [Google Scholar] [CrossRef]
- Zhang, S.; Chang, S.; Lin, Y. End-to-End Light Field Spatial Super-Resolution Network Using Multiple Epipolar Geometry. IEEE Trans. Image Process. 2021, 30, 5956–5968. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, Y.; Wang, S.; Zhang, W.; Wang, Z. Local-Global Feature Aggregation for Light Field Image Super-Resolution. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 2160–2164. [Google Scholar]
- Kar, A.; Nehra, S.; Mukhopadhyay, J.; Biswas, P.K. Sub-Aperture Feature Adaptation in Single Image Super-Resolution Model for Light Field Imaging. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3451–3455. [Google Scholar]
- Chen, Y.; Jiang, G.; Yu, M.; Xu, H.; Ho, Y.-S. Deep Light Field Spatial Super-Resolution Using Heterogeneous Imaging. IEEE Trans. Vis. Comput. Graph. 2022, 29, 4183–4197. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Xiong, Z.; Chen, C.; Liu, D.; Zha, Z.-J. Light Field Super-Resolution with Zero-Shot Learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 10005–10014. [Google Scholar]
- Yao, H.; Ren, J.; Yan, X.; Ren, M. Cooperative Light-Field Image Super-Resolution Based on Multi-Modality Embedding and Fusion with Frequency Attention. IEEE Signal Process. Lett. 2022, 29, 548–552. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, T.; Lu, Y.; Di, H. Detail-Preserving Transformer for Light Field Image Super-Resolution. AAAI Conf. Artif. Intell. 2022, 36, 2522–2530. [Google Scholar] [CrossRef]
- Yun, S.; Jang, J.; Paik, J. Geometry-Aware Light Field Angular Super Resolution Using Multiple Receptive Field Network. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022; pp. 1–3. [Google Scholar]
- Liu, G.; Yue, H.; Wu, J.; Yang, J. Efficient Light Field Angular Super-Resolution with Sub-Aperture Feature Learning and Macro-Pixel Upsampling. IEEE Trans. Multimed. 2022, 25, 6588–6600. [Google Scholar] [CrossRef]
- Jin, J.; Hou, J.; Chen, J.; Zeng, H.; Kwong, S.; Yu, J. Deep Coarse-to-Fine Dense Light Field Reconstruction with Flexible Sampling and Geometry-Aware Fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1819–1836. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Gao, W.; Li, G. End-to-End Spatial-Angular Light Field Super-Resolution Using Parallax Structure Preservation Strategy. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3396–3400. [Google Scholar]
- Duong, V.V.; Huu, T.N.; Yim, J.; Jeon, B. Light Field Image Super-Resolution Network via Joint Spatial-Angular and Epipolar Information. IEEE Trans. Comput. Imaging 2023, 9, 350–366. [Google Scholar] [CrossRef]
- Sheng, H.; Wang, S.; Yang, D.; Cong, R.; Cui, Z.; Chen, R. Cross-View Recurrence-based Self-Supervised Super-Resolution of Light Field. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 7252–7266. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; He, L. SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 6153–6162. [Google Scholar]
- Liu, G.; Yue, H.; Wu, J.; Yang, J. Intra-Inter View Interaction Network for Light Field Image Super-Resolution. IEEE Trans. Multimed. 2023, 25, 256–266. [Google Scholar] [CrossRef]
- Rerábek, M.; Ebrahimi, T. New light field image dataset. In Proceedings of the International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 6–8 June 2016; pp. 1–2. [Google Scholar]
- Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Field. In Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016, Revised Selected Papers, Part III 13; Springer: Cham, Switzerland, 2016; pp. 19–34. [Google Scholar]
- Wanner, S.; Meister, S.; Guillemot, C. Datasets and Benchmarks for Densely Sampled 4D Light Fields. Vis. Model. Vis. 2013, 13, 225–226. [Google Scholar]
- Pendu, M.L.; Jiang, X.; Guillemot, C. Light Field Inpainting Propagation via Low Rank Matrix Completion. IEEE Trans. I Age Process. 2018, 27, 1981–1993. [Google Scholar] [CrossRef] [PubMed]
- Vaish, V.; Adams, A. The (New) Stanford Light Field Archive; Computer Graphics Laboratory, Stanford University: Stanford, CA, USA, 2008; Volume 6. [Google Scholar]
Datasets | Training # | Testing # | Scene |
---|---|---|---|
EPFL [35] | 70 | 10 | Real-world |
HCInew [36] | 20 | 4 | Synthetic |
HCIold [37] | 10 | 2 | Synthetic |
INRIA [38] | 35 | 5 | Real-world |
STFGantry [39] | 9 | 2 | Real-world |
Method | EPFL | HCInew | HCIold | INRIA | STFgantry | Average |
---|---|---|---|---|---|---|
Bicubic | 29.50/0.9350 | 31.69/0.9335 | 37.46/0.9776 | 31.10/0.9563 | 30.82/0.9473 | 32.11/0.9499 |
LFBM5D [7] | 31.15/0.9545 | 33.72/0.9548 | 39.62/0.9854 | 32.85/0.9659 | 33.55/0.9718 | 34.18/0.9665 |
GB [8] | 31.22/0.9591 | 35.25/0.9692 | 40.21/0.9879 | 32.76/0.9724 | 35.44/0.9835 | 34.98/0.9744 |
resLF [12] | 32.75/0.9672 | 36.07/0.9715 | 42.61/0.9922 | 34.57/0.9784 | 36.89/0.9873 | 36.58/0.9793 |
LF-ATO [11] | 34.22/0.9752 | 37.13/0.9761 | 44.03/0.9940 | 36.16/0.9841 | 39.20/0.9922 | 38.15/0.9843 |
LF-InterNet [14] | 34.14/0.9761 | 37.28/0.9769 | 44.45/0.9945 | 35.80/0.9846 | 38.72/0.9916 | 38.08/0.9847 |
LF-DFnet [15] | 34.44/0.9766 | 37.44/0.9786 | 44.23/0.9943 | 36.36/0.9841 | 39.61/0.9935 | 38.42/0.9854 |
DPT [26] | 34.48/0.9759 | 37.35/0.9770 | 44.31/0.9943 | 36.40/0.9843 | 39.52/0.9928 | 38.41/0.9849 |
LF-IINet [34] | 34.68/0.9771 | 37.74/0.9789 | 44.84/0.9948 | 36.57/0.9853 | 39.86/0.9935 | 38.74/0.9859 |
LF-IGIM (Ours) | 34.85/0.9777 | 38.02/0.9799 | 44.86/0.9949 | 36.82/0.9857 | 40.42/0.9942 | 38.99/0.9865 |
Method | EPFL | HCInew | HCIold | INRIA | STFgantry | Average |
---|---|---|---|---|---|---|
Bicubic | 25.14/0.8311 | 27.61/0.8507 | 32.42/0.9335 | 26.82/0.8860 | 25.93/0.8431 | 27.58/0.8689 |
LFBM5D [7] | 26.61/0.8689 | 29.13/0.8823 | 34.23/0.9510 | 28.49/0.9137 | 28.30/0.9002 | 29.35/0.9032 |
GB [8] | 26.02/0.8628 | 28.92/0.8842 | 33.74/0.9497 | 27.73/0.9085 | 28.11/0.9014 | 28.90/0.9013 |
resLF [12] | 27.46/0.8507 | 29.92/0.9011 | 36.12/0.9651 | 29.64/0.9339 | 28.99/0.9214 | 30.43/0.9144 |
LF-ATO [11] | 28.64/0.9130 | 30.97/0.9150 | 37.06/0.9703 | 30.79/0.9490 | 30.79/0.9448 | 31.65/0.9384 |
LF-InterNet [14] | 28.67/0.9143 | 30.98/0.9165 | 37.11/0.9715 | 30.64/0.9486 | 30.53/0.9426 | 31.59/0.9387 |
LF-DFnet [15] | 28.77/0.9165 | 31.23/0.9196 | 37.32/0.9718 | 30.83/0.9503 | 31.15/0.9494 | 31.86/0.9415 |
DPT [26] | 28.93/0.9167 | 31.19/0.9186 | 37.39/0.9720 | 30.96/0.9502 | 31.14/0.9487 | 31.92/0.9412 |
LF-IINet [34] | 29.11/0.9194 | 31.36/0.9211 | 37.62/0.9737 | 31.08/0.9516 | 31.21/0.9495 | 32.08/0.9431 |
LF-IGIM (Ours) | 29.12/0.9208 | 31.50/0.9231 | 37.70/0.9739 | 31.15/0.9524 | 31.43/0.9520 | 32.18/0.9444 |
Method | #Params. | FLOPs | Ave. PSNR [dB]/SSIM |
---|---|---|---|
resLF [12] | 6.35 M | 37.06 G | 36.58/0.9793 |
LF-ATO [11] | 1.51 M | 597.66 G | 38.15/0.9843 |
LF-InterNet [14] | 4.80 M | 47.46 G | 38.08/0.9847 |
LF-DFnet [15] | 3.94 M | 57.22 G | 38.42/0.9854 |
DPT [26] | 3.73 M | 57.44 G | 38.41/0.9849 |
LF-IINet [34] | 4.84 M | 56.16 G | 38.74/0.9859 |
LF-IGIM (ours) | 5.85 M | 65.91 G | 38.99/0.9865 |
Method | #Params. | #FLOPs | Aver. PSNR [dB]/SSIM |
---|---|---|---|
resLF [12] | 6.79 M | 39.70 G | 30.43/0.9144 |
LF-ATO [11] | 1.66 M | 686.99 G | 31.65/0.9384 |
LF-InterNet [14] | 5.23 M | 50.10 G | 31.59/0.9387 |
LF-DFnet [15] | 3.99 M | 57.31 G | 31.86/0.9415 |
DPT [26] | 3.78 M | 58.64 G | 31.92/0.9412 |
LF-IINet [34] | 4.89 M | 57.42 G | 32.08/0.9431 |
LF-IGIM (ours) | 5.90 M | 67.25 G | 32.18/0.9444 |
Network | #Params | EPFL | HCInew | HCIold | INRIA | STFgantry | Average |
---|---|---|---|---|---|---|---|
LF-IGIM w/o RCB | 5.82 M | 28.93/0.9194 | 31.39/0.9216 | 37.59/0.9735 | 30.96/0.9517 | 31.40/0.9514 | 32.05/0.9435 |
LF-IGIM w/o SRU | 5.24 M | 29.09/0.9201 | 31.46/0.9222 | 37.65/0.9736 | 31.04/0.9521 | 31.40/0.9514 | 32.13/0.9439 |
LF-IGIM w/o RDB | 4.75 M | 28.85/0.9164 | 31.17/0.9188 | 37.29/0.9718 | 30.81/0.9495 | 30.86/0.9461 | 31.80/0.9405 |
LF-IGIM | 5.90 M | 29.12/0.9208 | 31.50/0.9231 | 37.70/0.9739 | 31.15/0.9524 | 31.43/0.9520 | 32.18/0.9444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Zhang, Q.; Meng, C.; Wang, B.; Fang, Y.; Yan, T. Light Field Spatial Super-Resolution via View Interaction and the Fusing of Hierarchical Features. Electronics 2024, 13, 2373. https://doi.org/10.3390/electronics13122373
Wei W, Zhang Q, Meng C, Wang B, Fang Y, Yan T. Light Field Spatial Super-Resolution via View Interaction and the Fusing of Hierarchical Features. Electronics. 2024; 13(12):2373. https://doi.org/10.3390/electronics13122373
Chicago/Turabian StyleWei, Wei, Qian Zhang, Chunli Meng, Bin Wang, Yun Fang, and Tao Yan. 2024. "Light Field Spatial Super-Resolution via View Interaction and the Fusing of Hierarchical Features" Electronics 13, no. 12: 2373. https://doi.org/10.3390/electronics13122373
APA StyleWei, W., Zhang, Q., Meng, C., Wang, B., Fang, Y., & Yan, T. (2024). Light Field Spatial Super-Resolution via View Interaction and the Fusing of Hierarchical Features. Electronics, 13(12), 2373. https://doi.org/10.3390/electronics13122373