The Information Security Issues of Distributed Economic Dispatch for New Generation Power Systems—Present Situation and Forecast
Abstract
:1. Introduction
2. Information Security Issues in Distributed Economic Dispatch Systems
2.1. External Cyber-Attacks
2.1.1. TS Attack
2.1.2. DoS Attack
2.1.3. FDI Attack
2.1.4. Replay Attack
2.2. Internal Malicious Behaviors
2.2.1. Deception Behavior
2.2.2. Fraud Behavior
2.3. Impact Assessment of Information Security Issues
3. Countermeasures for External Cyber-Attack
3.1. Pre-Attack Prevention
3.2. Detection during Attack
3.2.1. Signature-Based Detection
3.2.2. Anomaly-Based Detection
3.2.3. Hybrid Detection
3.2.4. Comparison of Detection Methods
3.3. Suppression during Attack
4. Countermeasures for Internal Malicious Behavior
4.1. Detection of Internal Malicious Behavior
4.2. Prevention for Internal Malicious Behavior
5. Prospects for Information Security Measure Methods in Distributed Economic Dispatch Systems
5.1. Information Security Issues Model
5.1.1. New Generation Power System CPS Model
5.1.2. External Cyber-Attack Model
5.1.3. Internal Malicious Behaviors Model
5.2. Integrated Security Defense System
5.2.1. Secure Measurement Technology Based on PMU
5.2.2. Defense Technology Support Base on Blockchain
5.2.3. Cyber-Physical Cooperative Defense System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DGs | Distributed generations |
PMUs | Phasor measurement units |
CPS | Cyber-physical systems |
TS | Time synchronization |
DoS | Denial of service |
FDI | False data injection |
DES | Data encryption standard |
3DES | Triple data encryption standard |
AES | Advanced encryption standard |
ECC | Elliptic curve cryptography |
RSA | Rivest–Shamir–Adleman |
GMM | Gaussian mixture model |
KDE | Kernel density estimation |
PCA | Principal component analysis |
NPE | Neighborhood preserving embedding |
SAE | Sparse autoencoder |
GAN | Generative adversarial network |
SA | Stacked autoencoder |
DBN | Deep belief network |
LR | Logistic regression |
KNN | K-nearest neighbor |
NB | Naive Bayes |
DT | Decision tree |
SVM | Support vector machine |
RF | Random forest |
SVR | Support vector regressor |
RNN | Recurrent neural network |
CNN | Convolutional neural network |
LSTM | Long short-term memory |
MLP | Multi-layer perceptron |
VNN | Vector neural network |
BLSTM | Bidirectional long short-term memory |
AENN | Autoencoder neural network |
DAE | Denoising autoencoder |
MSR | Mean subsequence reduced |
W-MSR | Weighted mean subsequence reduced |
E-MSR | Event-based mean subsequence reduced |
References
- Hang, B.; Liu, X.; Yu, Z.; Wang, W.; Jin, Q.; Li, W. Review on artificial intelligence-based network attack detection in power systems. High Volt. Eng. 2022, 48, 4413–4426. [Google Scholar]
- Wen, G.; Yu, X.; Liu, Z. Recent progress on the study of distributed economic dispatch in smart grid: An overview. Front. Inf. Technol. Electron. Eng. 2021, 22, 25–39. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, W.; Wei, X.; Pan, J.; Kong, X.; Yang, Z. Microgrid optimal dispatch based on distributed economic model predictive control algorithm. Energies 2023, 16, 4658. [Google Scholar] [CrossRef]
- Le, J.; Zhou, Q.; Zhao, L.; Wang, Y. Overview of distributed economic dispatch methods for power system based on consensus algorithm. Electr. Power Autom. Equip. 2020, 40, 44–54. [Google Scholar]
- Tu, H.; Du, Y.; Yu, H.; Meena, S.; Lu, X.; Lukic, S. Distributed economic dispatch for microgrids tracking ramp power commands. IEEE Trans. Smart Grid 2023, 14, 94–111. [Google Scholar] [CrossRef]
- Liu, L.; Song, H.; Piao, X.; Wang, S.; Qu, Y. Data protection of distributed economic dispatch based on blockchain. Electr. Power Inf. Commun. Technol. 2022, 20, 44–52. [Google Scholar]
- Li, P.; Liu, Y.; Xin, H.; Jiang, X. A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans. Ind. Inform. 2018, 14, 4343–4352. [Google Scholar] [CrossRef]
- Sharma, D.D.; Singh, S.N.; Lin, J.; Lin, J.; Foruzan, E. Agent-based distributed control schemes for distributed energy storage systems under cyber attacks. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 307–318. [Google Scholar] [CrossRef]
- Le, J.; Zhou, Q.; Zhao, L.; You, M. Fully distributed economic dispatch of active distribution network considering individual cheating. Proc. CSEE 2020, 40, 5445–5454. [Google Scholar]
- Tang, Y.; Chen, Q.; Li, M.; Wang, Q.; Ni, M.; Liang, Y. Overview on cyber-attacks against cyber physical power system. Autom. Electr. Power Syst. 2016, 40, 59–69. [Google Scholar]
- Liu, X.; Cui, Y.; Xu, D. Performance optimization for low voltage power line communication. Electr. Power Autom. Equip. 2017, 37, 30–42. [Google Scholar]
- Huang, R.; Li, Y. False phasor data detection under time synchronization attacks: A neural network approach. IEEE Trans. Smart Grid 2022, 13, 4828–4836. [Google Scholar] [CrossRef]
- He, W.; Gao, X.; Zhong, W.; Qian, F. Secure impulsive synchronization control of multi-agent systems under deception attacks. Inf. Sci. 2018, 459, 354–368. [Google Scholar] [CrossRef]
- Pang, Z.; Liu, G. Design and implementation of secure networked predictive control systems under deception attacks. IEEE Trans. Control Syst. Technol. 2012, 20, 1334–1342. [Google Scholar] [CrossRef]
- Zadsar, M.; Ghafouri, M.; Ameli, A.; Moussa, B. Preventing time-synchronization attacks on synchrophasor measurements of wide-area damping controllers. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Xu, F.; Xue, A.; Chang, N.; Kong, H.; Xu, J. Research status and prospects of detection, correction and recovery for abnormal synchrophasor data in power system. Proc. CSEE 2021, 41, 6869–6885. [Google Scholar]
- Almas, M.S.; Vanfretti, L.; Singh, R.S.; Jonsdottir, G.M. Vulnerability of synchrophasor-based WAMPAC applications to time synchronization spoofing. IEEE Trans. Smart Grid 2018, 9, 4601–4612. [Google Scholar] [CrossRef]
- Shepard, D.P.; Humphreys, T.E.; Fansler, A.A. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. Int. J. Crit. Infrastruct. Prot. 2012, 5, 146–153. [Google Scholar] [CrossRef]
- Xue, A.; Xu, F.; Chow, J.H.; Leng, S.; Kong, H.; Xu, J.; Bi, T. Data-driven detection for GPS spoofing attack using phasor measurements in smart grid. Int. J. Electr. Power Energy Syst. 2021, 129, 106883. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Song, K.; Li, T.; Zhang, N. An optimal DoS attack strategy disturbing the distributed economic dispatch of microgrid. Complexity 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, X.; Fu, W.; Chen, X.; Hu, S.; Zhang, L.; Xia, Y. An optimal combining attack strategy against economic dispatch of integrated energy system. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 246–250. [Google Scholar] [CrossRef]
- Huang, B.; Zhan, F.; Zhang, T.; Yang, C. An optimal DoS attack strategy against the economic dispatch for electric-thermal integrated energy system. Proc. CSEE 2020, 40, 6839–6854. [Google Scholar]
- Liu, X.; Che, L.; Gao, K.; Li, Z. Power system intra-interval operational security under false data injection attacks. IEEE Trans. Ind. Inform. 2020, 16, 4997–5008. [Google Scholar] [CrossRef]
- Zhang, W.; He, X. Stealthy attack detection and solution strategy for consensus-based distributed economic dispatch problem. Int. J. Electr. Power Energy Syst. 2018, 103, 233–246. [Google Scholar] [CrossRef]
- Siu, J.Y.; Kumar, N.; Panda, S.K. Command authentication using multiagent system for attacks on the economic dispatch problem. IEEE Trans. Ind. Appl. 2022, 58, 4381–4393. [Google Scholar] [CrossRef]
- Zhao, C.; He, J.; Cheng, P.; Chen, J. Analysis of consensus-based distributed economic dispatch under stealthy attacks. IEEE Trans. Ind. Electron. 2016, 64, 5107–5117. [Google Scholar] [CrossRef]
- Yassaie, N.; Hallajiyan, M.; Sharifi, I.; Talebi, H.A. Resilient control of multi-microgrids against false data injection attack. ISA Trans. 2021, 110, 238–246. [Google Scholar] [CrossRef]
- Xu, W.; Kurths, J.; Wen, G.; Wen, G.; Yu, X. Resilient event-triggered control strategies for second-order consensus. IEEE Trans. Autom. Control 2022, 67, 4226–4233. [Google Scholar] [CrossRef]
- Wu, S.X.; Li, G.; Zhang, S.; Lin, X. Detection of insider attacks in distributed projected sub-gradient algorithms. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1099–1111. [Google Scholar] [CrossRef]
- Gentz, R.; Wu, S.X.; Wai, H.T.; Scaglione, A.; Leshem, A. Data injection attacks in randomized gossiping. IEEE Trans. Signal Inf. Process. Netw. 2016, 2, 523–538. [Google Scholar] [CrossRef]
- Maestre, J.M.; Velarde, P.; Ishii, H.; Negenborn, R.R. Scenario-based defense mechanism against vulnerabilities in Lagrange-based DMPC. Control Eng. Pract. 2021, 114, 104879. [Google Scholar] [CrossRef]
- Velarde, P.; Maestre, J.M.; Ishii, H.; Negenborn, R.R. Vulnerabilities in Lagrange-based distributed model predictive control. Optim. Control Appl. Methods 2017, 39, 601–621. [Google Scholar] [CrossRef]
- Peng, S.; Sun, M.; Zhang, Z.; Deng, R.; Cheng, P. Application of machine learning in cyber security of cyber-physical power system. Electr. Power Autom. Equip. 2022, 46, 200–215. [Google Scholar]
- Shukla, S.; Thakur, S.; Breslin, J.G. Secure communication in smart meters using elliptic curve cryptography and digital signature algorithm. In Proceedings of the IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 261–266. [Google Scholar]
- Manickam, S.; Kesavaraja, D. Secure multi server authentication system using elliptic curve digital signature. In Proceedings of the International Conference on Circuit, Power and Computing Technologies, Nagercoil, India, 18–19 March 2016; pp. 1–4. [Google Scholar]
- Verma, U.K.; Kumar, S.; Sinha, D. A secure and efficient certificate based authentication protocol for MANET. In Proceedings of the International Conference on Circuit, Power and Computing Technologies, Nagercoil, India, 18–19 March 2016; pp. 1–7. [Google Scholar]
- Tanveer, M.; Khan, A.U.; Shah, H.; Alkhayyat, A.; Chaudhry, S.A.; Ahmad, M. ARAP-SG: Anonymous and reliable authentication protocol for smart grids. IEEE Access 2021, 9, 143366–143377. [Google Scholar] [CrossRef]
- Li, H.; Lu, R.; Zhou, L.; Yang, B.; Shen, X. An efficient merkle-tree-based authentication scheme for smart grid. IEEE Syst. J. 2014, 8, 655–663. [Google Scholar] [CrossRef]
- Mazloomzadeh, A.; Mohammed, O.A.; Zonouzsaman, S. Empirical development of a trusted sensing base for power system infrastructures. IEEE Trans. Smart Grid 2015, 6, 2454–2463. [Google Scholar] [CrossRef]
- Cui, A.; Zhao, H.; Zhang, X.; Zhao, B.; Li, Z. Power system real time data encryption system based on DES algorithm. In Proceedings of the 13th International Conference on Measuring Technology and Mechatronics Automation, Beihai, China, 16–17 January 2021; pp. 220–228. [Google Scholar]
- Hong, W.; Sheng, W.; Qing, Z.; Jian, Z. Research on data encryption of network communication based on big data. In Proceedings of the International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Fuzhou, China, 12–14 June 2020; pp. 129–131. [Google Scholar]
- Ramesh, A.; Suruliandi, A. Performance analysis of encryption algorithms for Information Security. In Proceedings of the International Conference on Circuits, Power and Computing Technologies, Nagercoil, India, 20–21 March 2013; pp. 840–844. [Google Scholar]
- Dua, A.; Dutta, A. A study of applications based on elliptic curve cryptography. In Proceedings of the 3rd International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 23–25 April 2019; pp. 249–254. [Google Scholar]
- Vahedi, E.; Baya, M.; Pakravan, M.R.; Rref, M.R. A secure ECC-based privacy preserving data aggregation scheme for smart grids. Comput. Netw. 2017, 129, 28–36. [Google Scholar] [CrossRef]
- Sharmam, M.; Choudhary, V.; Bhatia, R.S.; Malik, S.; Raina, A.; Khandelwal, H. Leveraging the power of quantum computing for breaking RSA encryption. Cyber-Phys. Syst. 2021, 7, 73–92. [Google Scholar] [CrossRef]
- Qu, B.; Wang, Z.; Shen, B.; Dong, H.; Zhang, X. Secure particle filtering with Paillier encryption–decryption scheme: Application to multi-machine power grids. IEEE Trans. Smart Grid 2024, 15, 863–873. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, L.; Rao, Y.; Yi, Y.; Liu, J. Research on fast encryption method for smart energy management system in smart gird. In Proceedings of the International Conference on Communications, Information System and Computer Engineering, Kuala Lumpur, Malaysia, 3–5 July 2020; pp. 76–80. [Google Scholar]
- Deng, J.; Kang, H. Hybrid encryption scheme for secure storage of smart grid data. In Proceedings of the Smart Grid and Internet of Things-4th EAI International Conference, TaiChung, Taiwan, 5–6 December 2020; pp. 135–156. [Google Scholar]
- Jin, L.; He, J.; Zhao, W.; Pang, J.; Lv, J.; Cheng, L. Design of electricity market big data analysis system based on hybrid encryption and secure transmission. In Proceedings of the 4th International Electrical and Energy Conference, Wuhan, China, 28–30 May 2021; pp. 1–6. [Google Scholar]
- Paverd, A.; Martin, A.; Brown, I. Privacy-enhanced bi-directional communication in the Smart Grid using trusted computing. In Proceedings of the International Conference on Smart Grid Communications, Venice, Italy, 3–6 November 2014; pp. 872–877. [Google Scholar]
- Cao, J.; Chen, X.; Li, E.; Xing, H.; Zhang, J.; Mu, G.; Miao, C.; Xu, C. Design of identity authentication scheme in smart grid based on blockchain. In Proceedings of the 4th International Conference on Frontiers Technology of Information and Computer, Qingdao, China, 2–4 December 2022; pp. 1093–1100. [Google Scholar]
- Gong, G.; Gao, S.; Lu, J.; Zhang, B.; Liu, R.; Wu, Q.; Su, C.; Chen, Z. Study on secure trusted protection architecture for prefecture-level regional energy internet. Proc. CSEE 2018, 38, 2861–2873 + 3137. [Google Scholar]
- Liang, G.; Weller, S.R.; Luo, F.; Zhao, J.; Dong, Z. Distributed blockchain-based data protection framework for modern power systems against cyber-attacks. IEEE Trans. Smart Grid 2019, 10, 3162–3173. [Google Scholar] [CrossRef]
- Raja, D.J.S.; Sriranjani, R.; Parvathy, A.; Hemavathi, N. A review on distributed denial of service attack in smart grid. In Proceedings of the 7th International Conference on Communication and Electronics Systems, Coimbatore, India, 22–24 June 2022; pp. 812–819. [Google Scholar]
- Kaur, P.; Kumar, M.; Bhandari, A. A review of detection approaches for distributed denial of service attacks. Syst. Sci. Control Eng. 2017, 5, 301–320. [Google Scholar] [CrossRef]
- Wang, J.; Phan, R.C.-W.; Whitley, J.N.; Parish, D.J. Augmented attack tree modeling of distributed denial of services and tree-based attack detection method. In Proceedings of the 10th IEEE International Conference on Computer and Information Technology, West Yorkshire, UK, 29 June–1 July 2010; pp. 1009–1014. [Google Scholar]
- Mitchell, R.; Chen, I.-R. Behavior-rule based intrusion detection systems for safety critical smart grid applications. IEEE Trans. Smart Grid 2013, 4, 1254–1263. [Google Scholar] [CrossRef]
- Aneetha, A.S.; Indhu, T.S.; Bose, S. Hybrid network intrusion detection system using expert rule-based approach. In Proceedings of the 2nd International Conference on Computational Science, Engineering and Information, Coimbatore, India, 26–28 October 2012; pp. 47–51. [Google Scholar]
- Cao, H.; Shi, J.; Zhang, J.; Jing, H. Attack detection technology of electricity consumption information collection system based on fuzzy Petri net. Electron. Des. Eng. 2022, 30, 105–108 + 119. [Google Scholar]
- Deng, Z.; Lv, J.; Jiang, D.; An, Y.; Song, C. A defense model of information system for colored Petri net under DoS attack. Electr. Power Inf. Commun. Technol. 2020, 18, 44–49. [Google Scholar]
- Han, K.; Duan, Y.; Jin, R.; Ma, Z.; Wang, H.; Wu, W.; Wang, B.; Cai, X. Attack detection method based on Bayesian hypothesis testing principle in CPS. Procedia Comput. Sci. 2021, 178, 474–480. [Google Scholar] [CrossRef]
- Cai, X. Research on Cyber-Physical Collaborative Defense Methods for Cyber-Attacks against Power Systems. Master’s Thesis, Southeast University, Nanjing, China, 2021. [Google Scholar]
- Sen, Ö.; Velde, D.V.D.; Lühman, M.; Sprünken, F.; Hacker, I.; Ulbig, A.; Andres, M.; Henze, M. On specification-based cyber-attack detection in smart grids. Energy Inform. 2022, 5, 23. [Google Scholar] [CrossRef]
- Wang, H.; Bah, M.J.; Hammad, M. Progress in outlier detection techniques: A survey. IEEE Access 2019, 7, 107964–108000. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, P.; Zhang, X.; Lin, J.; Yu, W. A gaussian-mixture model-based detection scheme against data integrity attacks in the smart grid. In Proceedings of the 25th International Conference on Computer Communication and Networks, Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9. [Google Scholar]
- Chen, Y.; Hayawi, K.; Zhao, Q.; Mou, J.; Yang, L.; Tang, J.; Li, Q.; Wen, H. Vector auto-regression-based false data injection attack detection method in edge computing environment. Sensors 2022, 22, 6789. [Google Scholar] [CrossRef]
- Ntalampiras, S. Automatic identification of integrity attacks in cyber-physical systems. Expert Syst. Appl. 2016, 58, 164–173. [Google Scholar] [CrossRef]
- Yuan, L.; Deng, S.; Xie, X. Attack detection based on alternating direction multiplier method for distributed state estimation in smart grid. In Proceedings of the China Automation Congress, Xiamen, China, 25–27 November 2022; pp. 264–269. [Google Scholar]
- Mosatafa, M.; Karim, A.; Behnam, M.-I.; Amjad, A.M.; Shalmani, M.E.; Arjamnd, A. Anomaly detection in the distribution grid: A nonparametric approach. In Proceedings of the International Conference on Smart Energy Systems and Technologies, Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar]
- Cheng, Z.; Ren, H.; Qin, J.; Lu, R. Security analysis for dynamic state estimation of power systems with measurement delays. IEEE Trans. Cybern. 2023, 53, 2087–2096. [Google Scholar] [CrossRef]
- Waghmare, S.; Kazi, F.; Singh, N. Data driven approach to attack detection in a cyber-physical smart grid system. In Proceedings of the Indian Control Conference, Guwahati, India, 4–6 January 2017; pp. 271–276. [Google Scholar]
- Zeng, J.; Li, P.; Gao, L.; Shen, X. Detection of false data injection attacks in smart grids based on time neighbor preserving embedding (TNPE). J. Saf. Sci. Technol. 2021, 17, 124–129. [Google Scholar]
- Rose, T.; Kifayat, K.; Abbas, S.; Asim, M. A hybrid anomaly-based intrusion detection system to improve time complexity in the Internet of Energy environment. J. Parallel Distrib. Comput. 2020, 145, 124–139. [Google Scholar] [CrossRef]
- Wang, W.; Ren, Z.; Sun, Y.; Pan, D.; Liu, Z. False data injection attack detection on transmission line using wavelet and sparse auto-encoder. Adv. Technol. Electr. Eng. Energy 2022, 41, 51–59. [Google Scholar]
- Xia, Y.; Wang, Y.; Zhou, L.; Fan, R. False Data injection attack detection method based on improved generative adversarial network. Electr. Power Constr. 2022, 41, 51–59. [Google Scholar]
- Guo, F.; Yi, X.; Xu, B.; Dong, H.; Zhang, W. Stealthy FDI attack detection based on deep belief network and transfer learning. Control Decis. 2022, 37, 913–921. [Google Scholar]
- Chen, L.; Gu, S.; Wang, Y.; Yang, Y.; Li, Y. Stacked autoencoder framework of false data injection attack detection in smart grid. Math. Probl. Eng. 2021, 2021, 2014345. [Google Scholar] [CrossRef]
- Ozay, M.; Esnaola, I.; Vural, F.T.Y.; Kulkarni, S.R.; Poor, H.V. Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1773–1786. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M.; Adefemi Alimi, K.O. Empirical comparison of machine learning algorithms for mitigating power systems intrusion attacks. In Proceedings of the International Symposium on Networks, Computers and Communications, Montreal, QC, Canada, 20–22 October 2020; pp. 1–5. [Google Scholar]
- Knesek, K.; Wlazlo, P.; Huang, H.; Sahu, A.; Goulart, A.; Davis, K. Detecting attacks on synchrophasor protocol using machine learning algorithms. In Proceedings of the 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aachen, Germany, 25–28 October 2021; pp. 102–107. [Google Scholar]
- Wei, X.; Aman, M.N.; Sikdar, B. Exploiting correlation among gps signals to detect gps spoofing in power grids. IEEE Trans. Ind. Appl. 2022, 58, 697–708. [Google Scholar] [CrossRef]
- Meriaux, E.; Koehler, D.; Islam, M.Z.; Vokkarane, V.; Lin, Y. Performance comparison of machine learning methods in DDoS attack detection in smart grids. In Proceedings of the IEEE MIT Undergraduate Research Technology Conference, Cambridge, MA, USA, 30 September–2 October 2022; pp. 1–5. [Google Scholar]
- Khare, G.; Mohapatra, A.; Singh, S.N. A Real-Time Approach for Detection and Correction of False Data in PMU Measurements. Electr. Power Syst. Res. 2021, 191, 106866. [Google Scholar] [CrossRef]
- Kwon, S.; Yoo, H.; Shon, T. IEEE 1815.1-based power system security with bidirectional RNN-based network anomalous attack detection for cyber-physical system. IEEE Access 2022, 8, 77572–77586. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, J. Detection method of false data injection attack on power grid based on improved convolutional neural network. Autom. Electr. Power Syst. 2019, 43, 97–104. [Google Scholar] [CrossRef]
- Chen, L.; Liu, N. False data injection attack and its detection method for interactive Demand response. Autom. Electr. Power Syst. 2021, 45, 15–23. [Google Scholar]
- Paul, S.; Kundu, R.K. A bagging MLP-based autoencoder for detection of false data injection attack in smart grid. In Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, New Orleans, LA, USA, 24–28 April 2022; pp. 1–5. [Google Scholar]
- Orouji, N.; Mosavi, M.R.; Martín, D. A lightweight and real-time hardware architecture for interference detection and mitigation of time synchronization attacks based on MLP neural networks. IEEE Access 2021, 9, 142938–142949. [Google Scholar] [CrossRef]
- Suhag, A.; Daniel, A. Study of statistical techniques and artificial intelligence methods in distributed denial of service (DDoS) assault and defense. J. Cyber Secur. Technol. 2022, 7, 21–51. [Google Scholar] [CrossRef]
- Aribisala, A.; Khan, M.S.; Husari, G. Machine learning algorithms and their applications in classifying cyber-attacks on a smart gird network. In Proceedings of the 12th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, BC, Canada, 27–30 October 2021; pp. 0063–0069. [Google Scholar]
- Bitirgen, K.; Filik, Ü.B. A hybrid deep learning model for discrimination of physical disturbance and cyber-attack detection in smart grid. Int. J. Crit. Infrastruct. Prot. 2023, 40, 100582. [Google Scholar] [CrossRef]
- Almutairy, F.; Scekic, L.; Matar, M.; Elmoudi, R.; Wshah, S. Detection and mitigation of GPS Spoofing Attacks on Phasor Measurement Units using deep learning. Int. J. Electr. Power Energy Syst. 2023, 151, 109160. [Google Scholar] [CrossRef]
- Shereen, E.; Dán, G. Model-based and data-driven detectors for time synchronization attacks against PMUs. IEEE J. Sel. Areas Commun. 2020, 38, 169–179. [Google Scholar] [CrossRef]
- Hao, J.; Piechocki, R.J.; Kaleshi, D.; Chin, W.H.; Fan, Z. Sparse malicious false data injection attacks and defense mechanisms in smart grids. IEEE Trans. Ind. Inform. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Ge, Q.; Jiao, C. Mitigating the impacts of false data injection attacks in smart grids using deep convolutional neural network s. In Proceedings of the 10th International Conference on Electronics Information and Emergency Communication, Beijing, China, 17–19 July 2020; pp. 174–177. [Google Scholar]
- Li, Y.; Wang, Y.; Hu, S. Online generative adversary network-based measurement recovery in false data injection attacks: A cyber-physical approach. IEEE Trans. Ind. Inform. 2020, 16, 2031–2043. [Google Scholar] [CrossRef]
- Ahmed, S.; Lee, Y.; Hyun, S.; Koo, I. Mitigating the impacts of covert cyber-attacks in smart grids via reconstruction of measurement data utilizing deep denoising autoencoders. Energies 2019, 12, 3091. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Du, D.; Sun, Q.; Fei, M.R. Dynamic state estimation of smart grid based on UKF under denial of service attacks. Acta Autom. Sin. 2019, 45, 120–131. [Google Scholar]
- Li, Y.; Huang, W.; Sun, B.; Zhang, X.; Xue, Y. Optimal energy management in micro-grid based on distributed event-triggered consensus predictive compensation under DoS attack. Mod. Electr. Power 2021, 38, 178–186. [Google Scholar]
- Xu, X.; Sun, J.; Wang, C.; Zou, B. A novel hybrid CNN-LSTM compensation model against DoS attacks in power system state estimation. Neural Process. Lett. 2022, 54, 1597–1621. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Li, J. A blockchain-enabled collaborative intrusion detection framework for SDN-assisted cyber-physical systems. Int. J. Inf. Secur. 2023, 22, 1219–1230. [Google Scholar] [CrossRef]
- Singh, J.; Sinha, A.; Goli, P.; Subramanian, V.; Shukla, S.K.; Vyas, O.P. Insider attack mitigation in a smart metering infrastructure using reputation score and blockchain technology. Int. J. Inf. Secur. 2022, 21, 527–546. [Google Scholar] [CrossRef]
- Meng, W.; Li, W.; Yang, L.T.; Li, P. Enhancing challenge-based collaborative intrusion detection networks against insider attacks using blockchain. Int. J. Inf. Secur. 2020, 19, 279–290. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.X.; Zhang, S.; Li, Q. Neural networks-aided insider attack detection for the average consensus algorithm. IEEE Access 2020, 8, 51871–51883. [Google Scholar] [CrossRef]
- Li, G.; Wu, S.X.; Zhang, S.; Li, Q. Detect insider attacks using cnn in decentralized optimization. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020; pp. 8758–8762. [Google Scholar]
- Zhao, C.; He, J.; Wang, Q. Resilient distributed optimization algorithm against adversarial attacks. IEEE Trans. Autom. Control 2020, 65, 4308–4315. [Google Scholar] [CrossRef]
- Dibaji, S.M.; Ishii, H. Consensus of second-order multi-agent systems in the presence of locally bounded faults. Syst. Control Lett. 2018, 79, 23–29. [Google Scholar] [CrossRef]
- Leblanc, H.J.; Zhang, H.; Koutsoukos, X.; Sundaram, S. Resilient asymptotic consensus in robust networks. IEEE J. Sel. Areas Commun. 2013, 31, 766–781. [Google Scholar] [CrossRef]
- Wang, Y.; Ishii, H. Resilient consensus through event-based communication. IEEE Trans. Control Netw. Syst. 2022, 7, 471–482. [Google Scholar] [CrossRef]
- Zhao, L. Research on Distributed Control Strategy of Active Distribution Network Considering Time Delay; Wuhan University: Wuhan, China, 2022. [Google Scholar]
- Le, J.; Qi, G.; Zhao, L.; Liao, X. Time-delay stability analysis of an active distribution network adopting a distributed economic dispatch strategy. Power Syst. Prot. Control 2022, 50, 75–87. [Google Scholar]
Information Security Issues | Type | Means | Purpose |
---|---|---|---|
External cyber-attack | TS attack | Tampering with data timestamps | Destroying information integrity |
DoS attack | Communication interruption | Disrupting communication availability | |
FDI attack | Injecting false data | Destroying information integrity | |
Replay attack | Tampering with real-time data | Destroying information integrity | |
Internal malicious behavior | Deception behavior | Injecting false data | Undermining system economy |
Fraud behavior | Tampering with one’s own information | Undermining system economy |
Metrics | Signature-Based Detection | Anomaly-Based Detection | Hybrid Detection |
---|---|---|---|
Complexity | Low | Medium | High |
Detection Accuracy | High | Medium | High |
False Positive Rate | Very low | High | Low |
False Negative Rate | Medium | High | Low |
False Alarm Rate | Low | High | Medium |
Implementation Cost | Low | Medium | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, J.; Lang, H.; Wang, J.; Wang, W.; Luo, G. The Information Security Issues of Distributed Economic Dispatch for New Generation Power Systems—Present Situation and Forecast. Electronics 2024, 13, 2680. https://doi.org/10.3390/electronics13142680
Le J, Lang H, Wang J, Wang W, Luo G. The Information Security Issues of Distributed Economic Dispatch for New Generation Power Systems—Present Situation and Forecast. Electronics. 2024; 13(14):2680. https://doi.org/10.3390/electronics13142680
Chicago/Turabian StyleLe, Jian, Hongke Lang, Jing Wang, Weihao Wang, and Guangyi Luo. 2024. "The Information Security Issues of Distributed Economic Dispatch for New Generation Power Systems—Present Situation and Forecast" Electronics 13, no. 14: 2680. https://doi.org/10.3390/electronics13142680
APA StyleLe, J., Lang, H., Wang, J., Wang, W., & Luo, G. (2024). The Information Security Issues of Distributed Economic Dispatch for New Generation Power Systems—Present Situation and Forecast. Electronics, 13(14), 2680. https://doi.org/10.3390/electronics13142680