Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Specifications
2.2. Fabrication of PSG-Based AOS Channel Transistors
2.3. Characterization Method
3. Results and Discussion
3.1. EDL and ECD Mechanisms of IWO and IGZO
3.2. Comparison of Residual Current Based on ECD and Trapping
3.3. Comparison of Electrical Characteristics of PSG-Based IWO and IGZO
3.4. Synaptic Characteristics Based on EDL and ECD Processes
3.5. Recognition Rate in MNIST ANN Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Hui, W.; Ran, X.; Xia, Y.; Xia, F.; Chao, L.; Chen, Y.; Huang, W. Metal halide perovskites for resistive switching memory devices and artificial synapses. J. Mater. Chem. C 2019, 7, 7476–7493. [Google Scholar] [CrossRef]
- Machens, C.K. Neuroscience. Building the human brain. Science 2012, 338, 1156–1157. [Google Scholar] [CrossRef]
- Ebbinghaus, H. Memory: A contribution to experimental psychology. Ann. Neurosci. 2013, 20, 155–156. [Google Scholar] [CrossRef]
- Cole, M.W.; Bassett, D.S.; Power, J.D.; Braver, T.S.; Petersen, S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron 2014, 83, 238–251. [Google Scholar] [CrossRef]
- Lv, Z.; Zhou, Y.; Han, S.T.; Roy, V.A.L. From biomaterial-based data storage to bio-inspired artificial synapse. Mater. Today 2018, 21, 537–552. [Google Scholar] [CrossRef]
- Wang, W.S.; Zhu, L.Q. Recent advances in neuromorphic transistors for artificial perception applications. Sci. Technol. Adv. Mater. 2023, 24, 10–41. [Google Scholar] [CrossRef]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Furber, S. Large-scale neuromorphic computing systems. J. Neural Eng. 2016, 13, 051001. [Google Scholar] [CrossRef]
- Qi, Y.; Tang, J.; Fan, S.; An, C.; Wu, E.; Liu, J. Dual Interactive Mode Human–Machine Interfaces Based on Triboelectric Nanogenerator and IGZO/In2O3 Heterojunction Synaptic Transistor. Small Methods 2024, 2301698. [Google Scholar] [CrossRef]
- Fan, S.; Wu, E.; Cao, M.; Xu, T.; Liu, T.; Yang, L.; Su, J.; Liu, J. Flexible In–Ga–Zn–N–O synaptic transistors for ultralow-power neuromorphic computing and EEG-based brain–computer interfaces. Mater. Horiz. 2023, 10, 4317–4328. [Google Scholar] [CrossRef]
- Fan, S.; Xu, T.; Wu, E.; Cao, M.; Liu, T.; Su, J. Side-liquid-gated electrochemical transistors and their neuromorphic applications. J. Mater. Chem. C 2021, 9, 16655–16663. [Google Scholar] [CrossRef]
- Geng, S.; Fan, S.; Li, H.; Qi, Y.; An, C.; Wu, E.; Su, J.; Liu, J. An artificial neuromuscular system for bimodal human–machine interaction. Adv. Funct. Mater. 2023, 33, 2302345. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, W.B.; Zhou, K.; Chen, H.Y.; Yang, J.Q.; Ding, G.; Chen, X.; Zhou, Y.; Zhou, L.; Li, F.; et al. Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 2019, 29, 1808783. [Google Scholar] [CrossRef]
- Boybat, I.; Le Gallo, M.; Nandakumar, S.R.; Moraitis, T.; Parnell, T.; Tuma, T.; Rajendran, B.; Leblebici, Y.; Sebastian, A.; Eleftheriou, E. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 2018, 9, 2514. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Guo, Y.B.; Long, T.Y.; Yu, F.; Xiao, H.; Lu, H.L. Threshold-tunable, spike-rate-dependent plasticity originating from interfacial proton gating for pattern learning and memory. ACS Appl. Mater. Interfaces 2020, 12, 7833–7839. [Google Scholar] [CrossRef]
- Abbas, H.; Abbas, Y.; Hassan, G.; Sokolov, A.S.; Jeon, Y.R.; Ku, B.; Kang, C.J.; Choi, C. The coexistence of threshold and memory switching characteristics of ALD HfO2 memristor synaptic arrays for energy-efficient neuromorphic computing. Nanoscale 2020, 12, 14120–14134. [Google Scholar] [CrossRef]
- Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 2009, 19, 1046–1053. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.; Lodge, T.P.; Frisbie, C.D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Fu, Y.M.; Wei, T.; Brownless, J.; Huang, L.; Song, A. Synaptic transistors with a memory time tunability over seven orders of magnitude. Appl. Phys. Lett. 2022, 120, 252903. [Google Scholar] [CrossRef]
- Kaneko, Y.; Nishitani, Y.; Ueda, M. Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electr. Dev. 2014, 61, 2827–2833. [Google Scholar] [CrossRef]
- Ueno, K.; Nakamura, S.; Shimotani, H.; Yuan, H.T.; Kimura, N.; Nojima, T.; Aoki, H.; Iwasa, Y.; Kawasaki, M. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 2011, 6, 408–412. [Google Scholar] [CrossRef]
- Li, L.J.; O’Farrell, E.C.T.; Loh, K.P.; Eda, G.; Özyilmaz, B.; Castro Neto, A.H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189. [Google Scholar] [CrossRef]
- Bian, H.; Goh, Y.Y.; Liu, Y.; Ling, H.; Xie, L.; Liu, X. Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater. 2021, 33, e2006469. [Google Scholar] [CrossRef]
- Wan, C.J.; Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors. ACS Appl. Mater. Interfaces 2016, 8, 9762–9768. [Google Scholar] [CrossRef]
- Qian, C.; Sun, J.; Kong, L.A.; Gou, G.; Yang, J.; He, J.; Gao, Y.; Wan, Q. Artificial synapses based on in-plane gate organic electrochemical transistors. ACS Appl. Mater. Interfaces 2016, 8, 26169–26175. [Google Scholar] [CrossRef]
- Jiang, S.; He, G.; Wang, W.; Zhu, M.; Chen, Z.; Gao, Q.; Liu, Y. Ultralow-Thermal-Budget-Driven IWO-Based Thin-Film Transistors and Application Explorations. Nanomater. 2022, 12, 3243. [Google Scholar] [CrossRef]
- Liu, R.; He, Y.; Jiang, S.; Zhu, L.; Chen, C.; Zhu, Y.; Wan, Q. Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor. Chin. Physics B 2021, 30, 058102. [Google Scholar] [CrossRef]
- Long, T.Y.; Zhu, L.Q.; Guo, Y.B.; Ren, Z.Y.; Xiao, H.; Ge, Z.Y.; Wang, L. Flexible oxide neuromorphic transistors with synaptic learning functions. J. Phys. D Appl. Phys. 2019, 52, 405101. [Google Scholar] [CrossRef]
- Tiwari, N.; Rajput, M.; John, R.A.; Kulkarni, M.R.; Nguyen, A.C.; Mathews, N. Indium tungsten oxide thin films for flexible high-performance transistors and neuromorphic electronics. ACS Appl. Mater. Interfaces 2018, 10, 30506–30513. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Xiao, H.; Gao, W.T.; Guo, Y.B. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 2018, 28, 1804025. [Google Scholar] [CrossRef]
- Oh, C.; Kim, I.; Park, J.; Park, Y.; Choi, M.; Son, J. Deep proton insertion assisted by oxygen vacancies for long-term memory in VO2 synaptic transistor. Adv. Electron. Mater. 2021, 7, 2000802. [Google Scholar] [CrossRef]
- Bornschein, G.; Arendt, O.; Hallermann, S.; Brachtendorf, S.; Eilers, J.; Schmidt, H. Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J. Physiol. 2013, 591, 3355–3370. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Shang, D.S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.Q.; Shen, B.G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yu, R.; Zhou, Y.; Yang, Q.; Li, E.; Chen, Q.; Chen, H.; Guo, T. Tuning the synaptic behaviors of biocompatible synaptic transistor through ion-doping. Org. Electron. 2021, 89, 106019. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Liu, N.; Shi, G.; Shen, X.; Yu, R.C.; Li, Y.Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, D.; Kong, X.; Tu, H.; Yu, Q.; Jiang, F. High proton-conducting monolithic phosphosilicate glass membranes. Micropor. Mesopor. Mater. 2011, 138, 63–67. [Google Scholar] [CrossRef]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Wan, C.J.; Zhu, L.Q.; Zhou, J.M.; Shi, Y.; Wan, Q. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. Nanoscale 2013, 5, 10194–10199. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, e1801548. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Sun, J.; Wu, G.D.; Zhang, H.L.; Wan, Q. Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale 2013, 5, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- Sung, M.J.; Seo, D.G.; Kim, J.; Baek, H.E.; Go, G.T.; Woo, S.J.; Kim, K.N.; Yang, H.; Kim, Y.H.; Lee, T.W. Overcoming the trade-off between efficient electrochemical doping and high state retention in electrolyte-gated organic synaptic transistors. Adv. Funct. Mater. 2024, 34, 2312546. [Google Scholar] [CrossRef]
- Chen, Y.X.; Wang, Y.L.; Li, F.J.; Chang, S.J.; Lee, T.E.; Cheng, C.C.; Lee, M.C.; Li, H.H.; Lin, Y.H.; Chien, C.H. Effect of oxygen treatment on the electrical performance and reliability of IWO thin-film transistors. IEEE Trans. Nanotechnol. 2024, 23, 299–302. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef]
- Ji, X.; Paulsen, B.D.; Chik, G.K.K.; Wu, R.; Yin, Y.; Chan, P.K.L.; Rivnay, J. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 2021, 12, 2480. [Google Scholar] [CrossRef] [PubMed]
- Monalisha, P.; Kumar, A.P.; Wang, X.R.; Piramanayagam, S.N. Emulation of synaptic plasticity on a cobalt-based synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces. 2022, 14, 11864–11872. [Google Scholar] [CrossRef]
- Rhee, J.; Choi, S.; Kang, H.; Kim, J.Y.; Ko, D.; Ahn, G.; Jung, H.; Choi, S.J.; Myong Kim, D.M.; Kim, D.H. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress. Solid State Electron. 2018, 140, 90–95. [Google Scholar] [CrossRef]
- Yuan, H.; Shimotani, H.; Ye, J.; Yoon, S.; Aliah, H.; Tsukazaki, A.; Kawasaki, M.; Iwasa, Y. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 2010, 132, 18402–18407. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Hong, W.K.; Jo, M.; Jo, G.; Choe, M.; Park, W.; Sohn, J.I.; Nedic, S.; Hwang, H.; Welland, M.E.; et al. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons. ACS Nano. 2011, 5, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Conde, A.; García Sánchez, F.J.; Liou, J.J.; Cerdeira, A.; Estrada, M.; Yue, Y. A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 2002, 42, 583–596. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Kwon, O.; Kim, T.; Oh, S.; Jin, S.; Park, W.; Kwon, J.D.; Hong, S.W.; Lee, C.S.; et al. Modulation of synaptic plasticity mimicked in al nanoparticle-embedded IGZO synaptic transistor. Adv. Electron. Mater. 2020, 6, 1901072. [Google Scholar] [CrossRef]
- Sundaram, R.S.; Gowtham, L.; Nayak, B.S. The role of excitatory neurotransmitter glutamate in brain physiology and pathology. Asian J. Pharm. Clin. Res. 2012, 5, 1–7. [Google Scholar]
- Liu, R.; He, Y.; Jiang, S.; Wang, L.; Wan, Q. Synaptic plasticity modulation and coincidence detection emulated in multi-terminal neuromorphic transistors. Org. Electron. 2021, 92, 106125. [Google Scholar] [CrossRef]
- Zhao, S.; Ni, Z.; Tan, H.; Wang, Y.; Jin, H.; Nie, T.; Xu, M.; Pi, X.; Yang, D. Electroluminescent synaptic devices with logic functions. Nano Energy 2018, 54, 383–389. [Google Scholar] [CrossRef]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed]
- Min, S.Y.; Cho, W.J. CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci. Rep. 2020, 10, 15561. [Google Scholar] [CrossRef]
- Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595. [Google Scholar] [CrossRef]
- Zhu, L.; He, Y.; Chen, C.; Zhu, Y.; Shi, Y.; Wan, Q. Synergistic modulation of synaptic plasticity in IGZO-based photoelectric neuromorphic TFTs. IEEE Trans. Electron Devices 2021, 68, 1659–1663. [Google Scholar] [CrossRef]
- Yu, J.M.; Lee, C.; Kim, D.J.; Park, H.; Han, J.K.; Hur, J.; Kim, J.K.; Kim, M.S.; Seo, M.; Im, S.G.; et al. All-solid-state ion synaptic transistor for wafer-scale integration with electrolyte of a nanoscale thickness. Adv. Funct. Mater. 2021, 31, 2010971. [Google Scholar] [CrossRef]
- Jang, J.W.; Park, S.; Burr, G.W.; Hwang, H.; Jeong, Y.H. Optimization of conductance change in Pr1−x CaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Dev. Lett. 2015, 36, 457–459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mah, D.-G.; Lim, S.-H.; Cho, W.-J. Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms. Electronics 2024, 13, 2916. https://doi.org/10.3390/electronics13152916
Mah D-G, Lim S-H, Cho W-J. Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms. Electronics. 2024; 13(15):2916. https://doi.org/10.3390/electronics13152916
Chicago/Turabian StyleMah, Dong-Gyun, Seong-Hwan Lim, and Won-Ju Cho. 2024. "Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms" Electronics 13, no. 15: 2916. https://doi.org/10.3390/electronics13152916
APA StyleMah, D. -G., Lim, S. -H., & Cho, W. -J. (2024). Enhancement of Synaptic Performance through Synergistic Indium Tungsten Oxide-Based Electric-Double-Layer and Electrochemical Doping Mechanisms. Electronics, 13(15), 2916. https://doi.org/10.3390/electronics13152916