DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration
Abstract
:1. Introduction
- Innovative classification network (DCG-Net): We introduced DCG-Net, a novel classification network that integrates convolutional neural networks (CNNs) and graph convolutional networks (GCNs). This hybrid architecture is designed to effectively capture both large-scale regular features and small-scale fine features in HSIs, addressing issues of information redundancy and feature mismatch commonly encountered in existing models.
- Expanding network (E-Net) for enhanced feature extraction: We developed a double-branch expanding network (E-Net) based on a CNN architecture. E-Net enhances the spectral features of HSIs and efficiently extracts high-level features by projecting the image information into higher spatial dimensions. This approach balances the extraction of both high-level and fine-grained features.
- Feature aggregation module (FAM): We designed a feature aggregation module (FAM) that adaptively learns channel features. The FAM dynamically calibrates channel responses within the network, enhancing the model’s feature representation and extraction capabilities.
2. Related Work
2.1. HSI Classification Based on Convolutional Neural Network
2.2. HSI Classification Based on Hyperpixel-Based Graph Convolutional Network
3. Proposed Method
3.1. Expanding Network
3.2. Superpixel Structured Graph
3.3. Graph Convolutional Network
3.4. Feature Aggregation Module
4. Experimental Results and Analysis
4.1. Experiment Design
4.1.1. HSI Datasets
4.1.2. Evaluation Indices
4.1.3. Environment Configuration
4.2. Experiment Results
4.2.1. Comparative Analysis of Classification Performance
4.2.2. Comparison of Running Time between Different Methods
4.2.3. Comparison of Classification Performance with Different Proportions of Training Samples
5. Discussion
5.1. Effects of the Number of Superpixels
5.2. Effects of the Value of K in the KNN Algorithm
5.3. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; He, Z.; Lou, A.; Plaza, A. RGB-to-HSV: A Frequency-Spectrum Unfolding Network for Spectral Super-Resolution of RGB Videos. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- Transon, J.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Guo, T.; Luo, F.; Zhang, L.; Tan, X.; Liu, J.; Zhou, X. Target Detection in Hyperspectral Imagery via Sparse and Dense Hybrid Representation. IEEE Geosci. Remote Sens. Lett. 2020, 17, 716–720. [Google Scholar] [CrossRef]
- Su, Y.; Gao, L.; Jiang, M.; Plaza, A.; Sun, X.; Zhang, B. NSCKL: Normalized Spectral Clustering with Kernel-Based Learning for Semisupervised Hyperspectral Image Classification. IEEE Trans. Cybern. 2023, 53, 6649–6662. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J.A. Multiple Kernel Learning for Hyperspectral Image Classification: A Review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, F.; Sun, W.; You, Z.; Falco, N.; Benediktsson, J.A. Landslide Inventory Mapping on VHR Images via Adaptive Region Shape Similarity. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5630211. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Prasad, S.; Bruce, L.M. Limitations of Principal Components Analysis for Hyperspectral Target Recognition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 625–629. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Yuan, H.; Li, L. Manifold-Based Sparse Representation for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7606–7618. [Google Scholar] [CrossRef]
- Bai, J.; Yuan, A.; Xiao, Z.; Zhou, H.; Wang, D.; Jiang, H.; Jiao, L. Class Incremental Learning With Few-Shots Based on Linear Programming for Hyperspectral Image Classification. IEEE Trans. Cybern. 2022, 52, 5474–5485. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sun, J.; Zhang, Y.; Zhu, Y.; Li, J.; Plaza, A.; Benediktsson, J.A.; Wei, Z. Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures. IEEE Trans. Cybern. 2021, 51, 3588–3601. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, F.; Hang, R.; Yuan, X. Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification. Remote Sens. 2017, 9, 1330. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, M.; Zhou, J.; Jia, S. Unsupervised Spatial-Spectral CNN-Based Feature Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y. Dual-Path Siamese CNN for Hyperspectral Image Classification with Limited Training Samples. IEEE Geosci. Remote Sens. Lett. 2021, 18, 518–522. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Ghaderizadeh, S.; Abbasi-Moghadam, D.; Sharifi, A.; Zhao, N.; Tariq, A. Hyperspectral Image Classification Using a Hybrid 3D-2D Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7570–7588. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A Fast Dense Spectral–Spatial Convolution Network Framework for Hyperspectral Images Classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, B.; Feng, S.; Zhu, W.; Sun, W.; Li, W.; Jia, X. Hyperspectral Image Classification with Multi-Attention Transformer and Adaptive Superpixel Segmentation-Based Active Learning. IEEE Trans. Image Process. 2023, 32, 3606–3621. [Google Scholar] [CrossRef] [PubMed]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Pu, C.; Huang, H.; Yang, L. An attention-driven convolutional neural network-based multi-level spectral–spatial feature learning for hyperspectral image classification. Expert Syst. Appl. 2021, 185, 115663. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C.; Yang, Y.; Wang, X. Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network. Remote Sens. 2020, 12, 582. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017. [Google Scholar] [CrossRef]
- Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8246–8257. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3162–3177. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. Multilevel Superpixel Structured Graph U-Nets for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8657–8671. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, Q.; Du, B.; Zhang, L. Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification. IEEE Trans. Image Process. 2022, 31, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Li, S.; Fang, L.; Jia, X.; Benediktsson, J.A. From Subpixel to Superpixel: A Novel Fusion Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4398–4411. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Chan, J.C.W. Content-Guided Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6124–6137. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Guo, S.; Li, L.; Zhu, M.; Yang, S.; Jiao, L. NAS-Guided Lightweight Multiscale Attention Fusion Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8754–8767. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Q.; Gong, Y.; Ahuja, N.; Yang, M.H. Superpixel Hierarchy. IEEE Trans. Image Process. 2018, 27, 4838–4849. [Google Scholar] [CrossRef]
- Bai, J.; Shi, W.; Xiao, Z.; Regan, A.C.; Ali, T.A.A.; Zhu, Y.; Zhang, R.; Jiao, L. Hyperspectral Image Classification Based on Superpixel Feature Subdivision and Adaptive Graph Structure. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; Volume 30, p. 3. [Google Scholar]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the 30th International Conference on Neural Information Processing Systems NIPS’16, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852. [Google Scholar]
- Ma, W.; Yang, Q.; Wu, Y.; Zhao, W.; Zhang, X. Double-Branch Multi-Attention Mechanism Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 1307. [Google Scholar] [CrossRef]
- Maveganzones. Hyperspectral Remote Sensing Scenes. Available online: https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 20 May 2011).
Class | CDCNN | DBMA | FDSSC | SSRN | DBDA | CEGCN | DCG-Net |
---|---|---|---|---|---|---|---|
1 | 31.86 | 90.69 | 76.02 | 93.68 | 90.08 | 69.79 | 98.95 |
2 | 68.65 | 90.68 | 76.02 | 93.36 | 96.14 | 96.71 | 98.03 |
3 | 62.57 | 95.53 | 93.44 | 92.64 | 97.45 | 98.05 | 98.42 |
4 | 58.52 | 94.16 | 96.18 | 88.95 | 97.11 | 91.61 | 98.09 |
5 | 96.37 | 97.02 | 98.77 | 99.42 | 97.93 | 93.02 | 94.94 |
6 | 90.16 | 98.30 | 99.08 | 98.31 | 78.73 | 99.40 | 99.35 |
7 | 39.54 | 70.19 | 76.15 | 88.56 | 78.39 | 90.90 | 94.09 |
8 | 88.17 | 98.14 | 96.86 | 98.04 | 99.86 | 99.97 | 99.97 |
9 | 74.32 | 75.43 | 77.12 | 84.63 | 79.96 | 23.33 | 93.12 |
10 | 66.52 | 89.32 | 93.97 | 91.81 | 94.27 | 94.71 | 96.88 |
11 | 75.81 | 95.02 | 97.30 | 94.28 | 97.65 | 98.81 | 98.61 |
12 | 49.91 | 92.64 | 95.78 | 94.21 | 95.78 | 96.99 | 97.60 |
13 | 93.39 | 98.39 | 99.84 | 99.33 | 96.04 | 99.36 | 99.26 |
14 | 88.69 | 97.29 | 96.80 | 98.25 | 98.80 | 99.67 | 99.99 |
15 | 78.82 | 87.86 | 96.80 | 93.61 | 97.03 | 94.18 | 98.73 |
16 | 95.32 | 94.19 | 97.42 | 91.83 | 86.62 | 93.52 | 96.23 |
OA (%) | 75.78 ± 5.02 | 93.92 ± 1.54 | 96.26 ± 2.49 | 94.72 ± 0.72 | 96.80 ± 0.59 | 97.21 ± 0.51 | 98.37 ± 0.58 |
AA (%) | 72.41 ± 7.97 | 91.55 ± 1.56 | 92.93 ± 6.73 | 93.81 ± 1.74 | 93.78 ± 2.25 | 90.00 ± 2.33 | 97.64 ± 0.86 |
Kappa | 72.22 ± 5.97 | 93.07 ± 1.76 | 95.73 ± 2.86 | 93.98 ± 0.82 | 96.35 ± 0.68 | 96.82 ± 0.58 | 98.15 ± 0.66 |
Class | CDCNN | DBMA | FDSSC | SSRN | DBDA | CEGCN | DCG-Net |
---|---|---|---|---|---|---|---|
1 | 94.71 | 100.00 | 98.64 | 96.54 | 99.94 | 99.56 | 99.61 |
2 | 85.41 | 93.38 | 97.38 | 90.87 | 96.46 | 98.41 | 100.00 |
3 | 79.28 | 79.58 | 90.82 | 87.57 | 83.27 | 99.58 | 99.43 |
4 | 53.57 | 75.11 | 90.56 | 75.62 | 83.32 | 95.08 | 100.00 |
5 | 47.40 | 65.96 | 89.85 | 69.62 | 90.85 | 90.53 | 97.76 |
6 | 71.22 | 91.48 | 99.14 | 93.07 | 98.44 | 99.48 | 100.00 |
7 | 72.16 | 87.74 | 93.69 | 71.67 | 88.58 | 98.76 | 100.00 |
8 | 84.10 | 95.38 | 98.71 | 98.13 | 99.64 | 99.77 | 100.00 |
9 | 91.09 | 96.07 | 99.76 | 98.49 | 99.91 | 100.00 | 99.89 |
10 | 92.85 | 97.02 | 99.86 | 99.24 | 100.00 | 100.00 | 98.67 |
11 | 98.24 | 99.89 | 98.77 | 98.96 | 99.26 | 100.00 | 98.43 |
12 | 96.25 | 98.17 | 98.12 | 99.52 | 99.43 | 99.29 | 98.86 |
13 | 99.91 | 100.00 | 100.00 | 99.89 | 99.91 | 100.00 | 100.00 |
OA (%) | 88.14 ± 2.57 | 94.42 ± 1.91 | 97.67 ± 1.12 | 95.30 ± 2.65 | 96.82 ± 1.31 | 99.18 ± 0.51 | 99.49 ± 0.34 |
AA (%) | 82.02 ± 3.61 | 90.75 ± 2.93 | 96.65 ± 1.13 | 90.71 ± 8.00 | 95.31 ± 1.51 | 98.50 ± 0.89 | 99.43 ± 0.55 |
Kappa | 86.78 ± 2.88 | 93.78 ± 2.13 | 97.41 ± 1.25 | 94.76 ± 2.96 | 96.46 ± 1.45 | 99.08 ± 0.57 | 99.44 ± 0.38 |
Class | CDCNN | DBMA | FDSSC | SSRN | DBDA | CEGCN | DCG-Net |
---|---|---|---|---|---|---|---|
1 | 97.34 | 100.00 | 100.00 | 100.00 | 100.00 | 99.95 | 100.00 |
2 | 97.25 | 99.92 | 99.92 | 99.75 | 99.96 | 100.00 | 100.00 |
3 | 90.37 | 97.79 | 97.75 | 94.21 | 98.16 | 99.86 | 100.00 |
4 | 98.08 | 93.55 | 97.32 | 97.87 | 94.61 | 99.52 | 95.99 |
5 | 94.60 | 98.54 | 99.38 | 98.89 | 98.98 | 98.10 | 98.28 |
6 | 96.79 | 99.56 | 99.95 | 99.85 | 99.83 | 99.83 | 99.82 |
7 | 97.09 | 99.41 | 99.51 | 99.32 | 98.90 | 99.98 | 99.77 |
8 | 78.56 | 94.18 | 90.51 | 88.45 | 93.04 | 97.64 | 99.70 |
9 | 99.00 | 99.60 | 99.50 | 99.36 | 99.35 | 100.00 | 100.00 |
10 | 88.21 | 97.13 | 97.19 | 96.93 | 98.29 | 96.97 | 98.56 |
11 | 84.98 | 95.35 | 94.84 | 95.68 | 96.10 | 99.75 | 97.48 |
12 | 95.94 | 99.18 | 98.21 | 98.69 | 99.16 | 100.00 | 99.84 |
13 | 96.92 | 99.29 | 99.44 | 97.91 | 99.64 | 99.80 | 99.86 |
14 | 93.76 | 93.49 | 96.99 | 96.74 | 94.96 | 98.63 | 97.91 |
15 | 73.75 | 90.90 | 90.75 | 81.16 | 93.17 | 97.11 | 99.92 |
16 | 94.27 | 99.04 | 99.93 | 99.21 | 99.91 | 98.97 | 99.93 |
OA (%) | 88.80 ± 1.03 | 96.52 ± 0.89 | 96.02 ± 1.15 | 93.17 ± 3.50 | 96.75 ± 0.64 | 98.74 ± 0.50 | 99.53 ± 0.29 |
AA (%) | 92.31 ± 1.26 | 97.31 ± 0.66 | 97.58 ± 0.52 | 96.50 ± 0.74 | 97.75 ± 0.41 | 99.13 ± 0.18 | 99.22 ± 0.48 |
Kappa | 87.52 ± 1.14 | 96.12 ± 0.99 | 95.56 ± 1.29 | 92.42 ± 3.82 | 96.38 ± 0.72 | 99.13 ± 0.55 | 99.49 ± 0.29 |
Dateset | Time (s) | CDCNN | DBMA | FDSSC | SSRN | DBDA | CEGCN | DCG-Net |
---|---|---|---|---|---|---|---|---|
Indian Pines | Train | 47.10 | 451.78 | 584.42 | 407.85 | 436.5 | 4.74 | 17.52 |
Test | 0.49 | 3.74 | 2.18 | 1.68 | 3.41 | 1.52 | 0.60 | |
Salinas | Train | 25.40 | 237.50 | 312.99 | 213.95 | 229.71 | 17.92 | 79.95 |
Test | 2.82 | 21.87 | 12.67 | 9.69 | 19.69 | 1.74 | 2.92 | |
Kennedy Space Center | Train | 23.30 | 175.87 | 230.31 | 164.04 | 180.00 | 60.46 | 278.95 |
Test | 0.24 | 1.67 | 0.99 | 0.76 | 1.53 | 2.43 | 8.39 |
Indian Pines | ||||||
---|---|---|---|---|---|---|
No. | 1st Branch | 2nd Branch | FAM | OA (%) | AA (%) | Kappa |
1 | ✓ | × | × | 97.78 ± 0.34 | 97.52 ± 0.89 | 97.47 ± 0.39 |
2 | × | ✓ | × | 97.29 ± 0.44 | 97.12 ± 1.20 | 96.19 ± 0.50 |
3 | ✓ | ✓ | × | 98.33 ± 0.57 | 96.60 ± 0.19 | 98.10 ± 0.66 |
4 | ✓ | ✓ | ✓ | 98.37 ± 0.47 | 97.64 ± 0.86 | 98.15 ± 0.66 |
Salinas | ||||||
No. | 1st Branch | 2nd Branch | FAM | OA (%) | AA (%) | Kappa |
1 | ✓ | × | × | 99.40 ± 0.20 | 98.96 ± 0.50 | 99.38 ± 0.25 |
2 | × | ✓ | × | 94.37 ± 0.46 | 93.83 ± 1.22 | 93.74 ± 0.52 |
3 | ✓ | ✓ | × | 99.40 ± 0.20 | 98.96 ± 0.50 | 99.38 ± 0.25 |
4 | ✓ | ✓ | ✓ | 99.53 ± 0.29 | 99.22 ± 0.48 | 99.49 ± 0.29 |
Kennedy Space Center | ||||||
No. | 1st Branch | 2nd Branch | FAM | OA (%) | AA (%) | Kappa |
1 | ✓ | × | × | 98.65 ± 0.58 | 98.50 ± 0.86 | 98.59 ± 0.64 |
2 | × | ✓ | × | 94.37 ± 0.46 | 93.83 ± 1.22 | 93.74 ± 0.52 |
3 | ✓ | ✓ | × | 98.89 ± 0.67 | 98.47 ± 1.03 | 98.76 ± 0.75 |
4 | ✓ | ✓ | ✓ | 99.49 ± 0.34 | 99.43 ± 0.55 | 99.44 ± 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Sun, X.; Zhang, Q. DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration. Electronics 2024, 13, 3271. https://doi.org/10.3390/electronics13163271
Zhu W, Sun X, Zhang Q. DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration. Electronics. 2024; 13(16):3271. https://doi.org/10.3390/electronics13163271
Chicago/Turabian StyleZhu, Wenkai, Xueying Sun, and Qiang Zhang. 2024. "DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration" Electronics 13, no. 16: 3271. https://doi.org/10.3390/electronics13163271
APA StyleZhu, W., Sun, X., & Zhang, Q. (2024). DCG-Net: Enhanced Hyperspectral Image Classification with Dual-Branch Convolutional Neural Network and Graph Convolutional Neural Network Integration. Electronics, 13(16), 3271. https://doi.org/10.3390/electronics13163271