A Hybrid Approach to Dimensional Aspect-Based Sentiment Analysis Using BERT and Large Language Models
Abstract
:1. Introduction
- We introduce innovative solutions based on BERT and LLM for dimABSA tasks, along with a variety of strategies to optimize their effectiveness.
- We evaluate the advantages of the BERT-based and LLM-based methods across different tasks and devise a hybrid approach that leverages the advantages of both methods.
- We conduct comprehensive experiments on the dimABSA benchmark. Our results demonstrate that our hybrid approach achieves state-of-the-art performance. Further, ablation studies confirm the effectiveness of each component in our approach. We also provide detailed discussions to offer deeper insights into our findings.
2. Background
2.1. Aspect-Based Sentiment Analysis
2.2. Dimensional Sentiment Analysis
3. Task Definition
- Subtask 1: Intensity prediction. This task aims to predict sentiment intensities of given aspect terms in valence–arousal dimensions. The input includes a sentence consisting of T words, along with a predefined aspect term a, which is a substring of the sentence. The output is the sentiment intensity, denoted as -. As illustrated in Figure 1, given the sentence “吐柴主艺文总店除了餐点好吃之外, 这里的用餐环境也很特别” (in English: “Besides the tasty meals at the main art store of Tuchai, the dining environment here is also quite special”) and two aspect terms “餐点” (meals) and “用餐环境” (dining environment), this subtask requires systems to predict valence–arousal scores of 6.5#5.75 and 6.5#6.0, respectively.
- Subtask 2: Triplet Extraction. This task focuses on identifying aspect-level sentiments and opinions from given review sentences, outputting them as sets of triplets. The input is a sentence, and the corresponding output is a set containing all identified triplets. Each triplet consists of an aspect term a, an opinion term o, and sentiment intensity . For example, given the sentence “吐柴主艺文总店除了餐点好吃之外, 这里的用餐环境也很特别” in Figure 1 (in English: “Besides the tasty meals at the main art store of Tuchai, the dining environment here is also quite special”), this subtask requires systems to produce the triplets {(餐点, 好吃, 6.5#5.75), (用餐环境, 很特别, 6.5#6.0)} (in English: {(meals, tasty, 6.5#5.75), (dining environment, quite special, 6.5#6.0)}).
- Subtask 3: Quadruple Extraction. This task builds on Subtask 2 by additionally requiring the identification of the aspect category, thus forming a quadruple. The aspect category falls within a predefined classification space, including 餐厅#概括 (restaurant#general), 餐厅#价格 (restaurant#prices), 餐厅#杂项 (restaurant#miscellaneous), 食物#价格 (food#prices), 食物#品质 (food#quality), 食物#份量与款式 (food#style& options), 饮料#价格 (drinks#prices), 饮料#品质 (drinks#quality), 饮料#份量与款式 (drinks#style&options), 氛围#概括 (ambience#general), 服务#概括 (services#general), and 地点#概括 (location#general). The specific meanings of each category can be found in the guideline [87]. For example, given the sentence in Figure 1, this subtask requires systems to produce the quadruples {(餐点, 食物#品质, 好吃, 6.5#5.75), (用餐环境, 氛围#概括, 很特别, 6.5#6.0)} (in English: {(meals, food#quality, tasty, 6.5#5.75), (dining environment, ambience#general, quite special, 6.5#6.0)}).
4. Methods
4.1. BERT-Based Method
4.1.1. Domain-Adaptive Pre-Training
4.1.2. Aspect–Opinion Extraction
4.1.3. Aspect–Opinion Pairing and Category Classification
4.1.4. Intensity Prediction
4.2. LLM-Based Method
4.3. Ensemble Strategy
5. Experiments
5.1. Experimental Setup
5.2. Experimental Results
- Firstly, the hybrid approach outperforms the individual approaches on the majority of metrics, indicating that it effectively leverages the strengths of both BERT-based and LLM-based methods to achieve enhanced performance. Note that the A-Q-F1 metrics for the hybrid approach are slightly lower than those for BERTCLS, indicating that the advantage of large model methods in arousal scores is relatively weak, as also reflected in the A-T-F1.
- Secondly, despite having significantly fewer parameters (296M) compared to the LLM-based method (7B), the BERT-based method exhibits superior performance across all metrics. We attribute this advantage to two main limitations of LLMs: (1) LLMs lack specific structures or designs to model the interactions among sentiment elements or between sentiment elements and context. This deficiency hinders the model’s ability to learn task-specific representations. (2) The mapping from representations to dimABSA labels in LLMs is unnatural. Specifically, representing continuous valence–arousal scores as text reduces the semantic information inherent in the numerical values.
- Thirdly, within the BERT-based approaches, the regression model performs better in Subtask 1, while the classification model excels in Subtasks 2 and 3. This suggests that the regression model is more advantageous for fine-grained intensity assessments, whereas the classification model is more effective for coarse-grained intensity assessments.
- Finally, in the LLM-based methods, representing scores as decimals (LLMDEC) yields better results in Subtask 1, while integer representations (LLMINT) are more effective in Subtasks 2 and 3. This mirrors the conclusions drawn from the BERT-based methods.
6. Discussion
6.1. Analysis of Ensemble Strategy
6.2. Ablation Study
6.3. Effect of Pre-Trained Language Models
6.4. Error Analysis
7. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Medhat, W.; Hassan, A.; Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 2014, 5, 1093–1113. [Google Scholar] [CrossRef]
- Liu, B. Sentiment analysis and subjectivity. In Handbook of Natural Language Processing; Routledge: Abingdon-on-Thames, UK, 2010; Volume 2, pp. 627–666. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; AL-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. SemEval-2016 Task 5: Aspect Based Sentiment Analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), San Diego, CA, USA, 16–17 June 2016; pp. 19–30. [Google Scholar] [CrossRef]
- Cai, H.; Xia, R.; Yu, J. Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 340–350. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, Y.; Li, X.; Yuan, Y.; Bing, L.; Lam, W. Aspect Sentiment Quad Prediction as Paraphrase Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online, 7–11 November 2021; pp. 9209–9219. [Google Scholar] [CrossRef]
- Lee, L.H.; Yu, L.C.; Wang, S.; Liao, J. Overview of the SIGHAN 2024 shared task for Chinese dimensional aspect-based sentiment analysis. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 165–174. [Google Scholar]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Zhang, Y.; Xu, R. HITSZ-HLT at SIGHAN-2024 dimABSA Task: Integrating BERT and LLM for Chinese Dimensional Aspect-Based Sentiment Analysis. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 175–185. [Google Scholar]
- Li, P.; Sun, T.; Tang, Q.; Yan, H.; Wu, Y.; Huang, X.; Qiu, X. CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, ON, Canada, 9–14 July 2023; pp. 15339–15353. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Y.; Zuo, Y.; Ren, W.; Liu, W.; Su, M.; Guo, Y.; Liu, Y.; Li, X.; Hu, Z.; et al. KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, 11–16 August 2024; pp. 8758–8779. [Google Scholar]
- Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L. QLoRA: Efficient Finetuning of Quantized LLMs. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2023; Volume 36, pp. 10088–10115. [Google Scholar]
- Wang, Y.; Huang, M.; Zhu, X.; Zhao, L. Attention-based LSTM for Aspect-level Sentiment Classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 606–615. [Google Scholar] [CrossRef]
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4068–4074. [Google Scholar]
- Liu, J.; Zhang, Y. Attention Modeling for Targeted Sentiment. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain, 3–7 April 2017; pp. 572–577. [Google Scholar]
- Ma, Y.; Peng, H.; Cambria, E. Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge into an Attentive LSTM. Proc. AAAI Conf. Artif. Intell. 2018, 32, 5876–5883. [Google Scholar] [CrossRef]
- Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 3298–3307. [Google Scholar]
- Vo, D.T.; Zhang, Y. Target-dependent twitter sentiment classification with rich automatic features. In Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 1347–1353. [Google Scholar]
- Zhang, M.; Zhang, Y.; Vo, D.T. Gated Neural Networks for Targeted Sentiment Analysis. Proc. AAAI Conf. Artif. Intell. 2016, 30, 3087–3093. [Google Scholar] [CrossRef]
- Tang, D.; Qin, B.; Liu, T. Aspect Level Sentiment Classification with Deep Memory Network. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 214–224. [Google Scholar] [CrossRef]
- Fan, C.; Gao, Q.; Du, J.; Gui, L.; Xu, R.; Wong, K.F. Convolution-based Memory Network for Aspect-based Sentiment Analysis. In Proceedings of the SIGIR’18: 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, New York, NY, USA, 8–12 July 2018; pp. 1161–1164. [Google Scholar] [CrossRef]
- Xue, W.; Li, T. Aspect Based Sentiment Analysis with Gated Convolutional Networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 2514–2523. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arxiv 2019, arXiv:1907.11692. [Google Scholar]
- Sun, C.; Huang, L.; Qiu, X. Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 380–385. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, K.; Zhang, M.; Zhao, H.; Liu, Q.; Wu, W.; Chen, E. Incorporating Dynamic Semantics into Pre-Trained Language Model for Aspect-based Sentiment Analysis. In Proceedings of the Findings of Annual Meeting of the Association for Computational Linguistics—ACL, Dublin, Ireland, 22–27 May 2022; pp. 3599–3610. [Google Scholar]
- Xu, H.; Liu, B.; Shu, L.; Philip, S.Y. BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 2324–2335. [Google Scholar]
- Li, Z.; Zou, Y.; Zhang, C.; Zhang, Q.; Wei, Z. Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online, 7–11 November 2021; pp. 246–256. [Google Scholar]
- Zhang, Y.; Yang, Y.; Liang, B.; Chen, S.; Qin, B.; Xu, R. An Empirical Study of Sentiment-Enhanced Pre-Training for Aspect-Based Sentiment Analysis. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, 9–14 July 2023; pp. 9633–9651. [Google Scholar] [CrossRef]
- Liang, B.; Luo, W.; Li, X.; Gui, L.; Yang, M.; Yu, X.; Xu, R. Enhancing aspect-based sentiment analysis with supervised contrastive learning. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, New York, NY, USA, 1–5 November 2021; pp. 3242–3247. [Google Scholar]
- Cao, J.; Liu, R.; Peng, H.; Jiang, L.; Bai, X. Aspect is not you need: No-aspect differential sentiment framework for aspect-based sentiment analysis. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, WA, USA, 10–15 July 2022; pp. 1599–1609. [Google Scholar]
- Wang, K.; Shen, W.; Yang, Y.; Quan, X.; Wang, R. Relational Graph Attention Network for Aspect-based Sentiment Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics—ACL, Online, 5–10 July 2020; pp. 3229–3238. [Google Scholar]
- Chen, C.; Teng, Z.; Wang, Z.; Zhang, Y. Discrete Opinion Tree Induction for Aspect-based Sentiment Analysis. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 2051–2064. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Q.; Feng, Y.; Ding, Z.; Yang, Z.; Xia, R. Is ChatGPT a good sentiment analyzer? A preliminary study. arXiv 2023, arXiv:2304.04339. [Google Scholar]
- Xu, H.; Wang, Q.; Zhang, Y.; Yang, M.; Zeng, X.; Qin, B.; Xu, R. Improving In-Context Learning with Prediction Feedback for Sentiment Analysis. arXiv 2024, arXiv:2406.02911. [Google Scholar]
- Fei, H.; Li, B.; Liu, Q.; Bing, L.; Li, F.; Chua, T.S. Reasoning Implicit Sentiment with Chain-of-Thought Prompting. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Toronto, ON, Canada, 9–14 July 2023; pp. 1171–1182. [Google Scholar] [CrossRef]
- Simmering, P.F.; Huoviala, P. Large language models for aspect-based sentiment analysis. arXiv 2023, arXiv:2310.18025. [Google Scholar]
- Šmíd, J.; Priban, P.; Kral, P. LLaMA-Based Models for Aspect-Based Sentiment Analysis. In Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, Bangkok, Thailand, 15 August 2024; pp. 63–70. [Google Scholar]
- Wang, Q.; Ding, K.; Liang, B.; Yang, M.; Xu, R. Reducing Spurious Correlations in Aspect-based Sentiment Analysis with Explanation from Large Language Models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, 6–10 December 2023; pp. 2930–2941. [Google Scholar] [CrossRef]
- Yin, Y.; Wei, F.; Dong, L.; Xu, K.; Zhang, M.; Zhou, M. Unsupervised word and dependency path embeddings for aspect term extraction. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 2979–2985. [Google Scholar]
- Xu, H.; Liu, B.; Shu, L.; Yu, P.S. Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 592–598. [Google Scholar] [CrossRef]
- Hu, M.; Peng, Y.; Huang, Z.; Li, D.; Lv, Y. Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 537–546. [Google Scholar] [CrossRef]
- Wei, Z.; Hong, Y.; Zou, B.; Cheng, M.; Yao, J. Don’t Eclipse Your Arts Due to Small Discrepancies: Boundary Repositioning with a Pointer Network for Aspect Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3678–3684. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, Z.; Zhao, Q.; Yang, M.; Xu, R. Progressive Self-Training with Discriminator for Aspect Term Extraction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021; pp. 257–268. [Google Scholar] [CrossRef]
- Wang, W.; Pan, S.J.; Dahlmeier, D.; Xiao, X. Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 616–626. [Google Scholar] [CrossRef]
- Wang, W.; Pan, S.J.; Dahlmeier, D.; Xiao, X. Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms. Proc. AAAI Conf. Artif. Intell. 2017, 31, 3316–3322. [Google Scholar] [CrossRef]
- Li, X.; Lam, W. Deep Multi-Task Learning for Aspect Term Extraction with Memory Interaction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017; pp. 2886–2892. [Google Scholar] [CrossRef]
- Li, X.; Bing, L.; Li, P.; Lam, W.; Yang, Z. Aspect term extraction with history attention and selective transformation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 4194–4200. [Google Scholar]
- Fan, Z.; Wu, Z.; Dai, X.Y.; Huang, S.; Chen, J. Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 2509–2518. [Google Scholar] [CrossRef]
- Peng, H.; Xu, L.; Bing, L.; Huang, F.; Lu, W.; Si, L. Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis. Proc. AAAI Conf. Artif. Intell. 2020, 34, 8600–8607. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Liu, J.; Wang, Y. Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extraction. Proc. AAAI Conf. Artif. Intell. 2021, 35, 12666–12674. [Google Scholar] [CrossRef]
- Mao, Y.; Shen, Y.; Yu, C.; Cai, L. A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis. Proc. AAAI Conf. Artif. Intell. 2021, 35, 13543–13551. [Google Scholar] [CrossRef]
- Zhai, Z.; Chen, H.; Feng, F.; Li, R.; Wang, X. COM-MRC: A COntext-Masked Machine Reading Comprehension Framework for Aspect Sentiment Triplet Extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 3230–3241. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Y.; Lin, Y.; Chang, L.; Zhang, H. A span-sharing joint extraction framework for harvesting aspect sentiment triplets. Knowl.-Based Syst. 2022, 242, 108366. [Google Scholar] [CrossRef]
- Chen, Y.; Keming, C.; Sun, X.; Zhang, Z. A Span-level Bidirectional Network for Aspect Sentiment Triplet Extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 4300–4309. [Google Scholar] [CrossRef]
- Xu, L.; Chia, Y.K.; Bing, L. Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 4755–4766. [Google Scholar] [CrossRef]
- Wu, Z.; Ying, C.; Zhao, F.; Fan, Z.; Dai, X.; Xia, R. Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; pp. 2576–2585. [Google Scholar] [CrossRef]
- Chen, H.; Zhai, Z.; Feng, F.; Li, R.; Wang, X. Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 2974–2985. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Li, Y.; Liang, B.; Chen, S.; Dang, Y.; Yang, M.; Xu, R. Boundary-Driven Table-Filling for Aspect Sentiment Triplet Extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 6485–6498. [Google Scholar] [CrossRef]
- Yan, H.; Dai, J.; Ji, T.; Qiu, X.; Zhang, Z. A Unified Generative Framework for Aspect-based Sentiment Analysis. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 2416–2429. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Q.; Dai, D.; Xiao, X.; Lin, H.; Han, X.; Sun, L.; Wu, H. Unified Structure Generation for Universal Information Extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 5755–5772. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Deng, Y.; Bing, L.; Lam, W. Towards Generative Aspect-Based Sentiment Analysis. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Online, 1–6 August 2021; pp. 504–510. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, H.; He, Y.; Mou, H.; Yang, J. A Unified One-Step Solution for Aspect Sentiment Quad Prediction. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, 9–14 July 2023; pp. 12249–12265. [Google Scholar] [CrossRef]
- Qin, Y.; Lv, S. Generative Aspect Sentiment Quad Prediction with Self-Inference Template. Appl. Sci. 2024, 14, 6017. [Google Scholar] [CrossRef]
- Bao, X.; Wang, Z.; Jiang, X.; Xiao, R.; Li, S. Aspect-based Sentiment Analysis with Opinion Tree Generation. In Proceedings of the 31st International Joint Conference on Artificial Intelligence—IJCAI, Vienna, Austria, 23–29 July 2022; Volume 2022, pp. 4044–4050. [Google Scholar]
- Mao, Y.; Shen, Y.; Yang, J.; Zhu, X.; Cai, L. Seq2Path: Generating Sentiment Tuples as Paths of a Tree. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022; pp. 2215–2225. [Google Scholar] [CrossRef]
- Hu, M.; Wu, Y.; Gao, H.; Bai, Y.; Zhao, S. Improving Aspect Sentiment Quad Prediction via Template-Order Data Augmentation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 7889–7900. [Google Scholar] [CrossRef]
- Gou, Z.; Guo, Q.; Yang, Y. MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, ON, Canada, 9–14 July 2023; pp. 4380–4397. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Cui, S.; Huang, K.; Wang, X.; Liu, T. Adaptive Data Augmentation for Aspect Sentiment Quad Prediction. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 11176–11180. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, M.; Zhou, S. Boosting Aspect Sentiment Quad Prediction by Data Augmentation and Self-Training. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Wang, A.; Jiang, J.; Ma, Y.; Liu, A.; Okazaki, N. Generative Data Augmentation for Aspect Sentiment Quad Prediction. In Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023), Toronto, ON, Canada, 13–14 July 2023; pp. 128–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Hu, W.; Wang, Z.; Chen, S.; Xu, R. Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, 11–16 August 2024; pp. 11862–11875. [Google Scholar]
- Hu, M.; Bai, Y.; Wu, Y.; Zhang, Z.; Zhang, L.; Gao, H.; Zhao, S.; Huang, M. Uncertainty-Aware Unlikelihood Learning Improves Generative Aspect Sentiment Quad Prediction. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, 9–14 July 2023; pp. 13481–13494. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.D.; Xiao, R.; Xiong, L. The Limits of ChatGPT in Extracting Aspect-Category-Opinion-Sentiment Quadruples: A Comparative Analysis. arxiv 2023, arXiv:2310.06502. [Google Scholar]
- Kim, J.; Heo, R.; Seo, Y.; Kang, S.; Yeo, J.; Lee, D. Self-Consistent Reasoning-based Aspect-Sentiment Quad Prediction with Extract-Then-Assign Strategy. arXiv 2024, arXiv:2403.00354. [Google Scholar]
- Warriner, A.B.; Kuperman, V.; Brysbaert, M. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 2013, 45, 1191–1207. [Google Scholar] [CrossRef]
- Preoţiuc-Pietro, D.; Schwartz, H.A.; Park, G.; Eichstaedt, J.; Kern, M.; Ungar, L.; Shulman, E. Modelling valence and arousal in facebook posts. In Proceedings of the 7th workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, San Diego, CA, USA, 16 June 2016; pp. 9–15. [Google Scholar]
- Buechel, S.; Hahn, U. EmoBank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain, 3–7 April 2017; pp. 578–585. [Google Scholar]
- Yu, L.C.; Lee, L.H.; Hao, S.; Wang, J.; He, Y.; Hu, J.; Lai, K.R.; Zhang, X. Building Chinese affective resources in valence-arousal dimensions. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 540–545. [Google Scholar]
- Lee, L.H.; Li, J.H.; Yu, L.C. Chinese EmoBank: Building valence-arousal resources for dimensional sentiment analysis. ACM Trans. Asian-Low-Resour. Lang. Inf. Process. 2022, 21, 1–18. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Huang, Y.; Wu, S.; Yuan, Z. Thu_ngn at ijcnlp-2017 task 2: Dimensional sentiment analysis for chinese phrases with deep lstm. In Proceedings of the IJCNLP 2017, Shared Tasks, Taipei, Taiwan, 27 November–1 December 2017; pp. 47–52. [Google Scholar]
- Xie, H.; Lin, W.; Lin, S.; Wang, J.; Yu, L.C. A multi-dimensional relation model for dimensional sentiment analysis. Inf. Sci. 2021, 579, 832–844. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.C.; Lai, K.R.; Zhang, X. Dimensional sentiment analysis using a regional CNN-LSTM model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016; pp. 225–230. [Google Scholar]
- Wang, J.; Yu, L.C.; Lai, K.R.; Zhang, X. Tree-structured regional CNN-LSTM model for dimensional sentiment analysis. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 28, 581–591. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Deng, Y.C.; Wang, Y.R.; Chen, S.H.; Lee, L.H. Towards Transformer Fusions for Chínese Sentiment Intensity Prediction in Valence-Arousal Dimensions. IEEE Access 2023, 11, 109974–109982. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.C.; Zhang, X. SoftMCL: Soft Momentum Contrastive Learning for Fine-grained Sentiment-aware Pre-training. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), Torino, Italy, 20–25 May 2024; pp. 15012–15023. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; Al-Smadi, M.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. SemEval 2016 Task 5 Aspect Based Sentiment Analysis (ABSA-16) Annotation Guidelines. 2016. Available online: https://alt.qcri.org/semeval2016/task5/data/uploads/absa2016_annotationguidelines.pdf (accessed on 14 September 2024).
- Li, T. Restaurant Review Data on Dianping.com. 2018. Available online: https://opendata.pku.edu.cn/dataset.xhtml?persistentId=doi:10.18170/DVN/GCIUN4 (accessed on 15 September 2024).
- Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-Training With Whole Word Masking for Chinese BERT. IEEE/ACM Trans. Audio Speech, Lang. Process. 2021, 29, 3504–3514. [Google Scholar] [CrossRef]
- Che, W.; Li, Z.; Liu, T. LTP: A Chinese language technology platform. In Coling 2010: Demonstrations; Coling 2010 Organizing Committee: Beijing, China, 2010; pp. 13–16. [Google Scholar]
- Ramshaw, L.A.; Marcus, M.P. Text Chunking Using Transformation-Based Learning. In Natural Language Processing Using Very Large Corpora; Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 157–176. [Google Scholar] [CrossRef]
- Deotte, C. The Magic of No Dropout. 2021. Available online: https://www.kaggle.com/competitions/commonlitreadabilityprize/discussion/260729 (accessed on 1 August 2024).
- Wang, X.; Zhou, W.; Zu, C.; Xia, H.; Chen, T.; Zhang, Y.; Zheng, R.; Ye, J.; Zhang, Q.; Gui, T.; et al. InstructUIE: Multi-task Instruction Tuning for Unified Information Extraction. arxiv 2023, arXiv:2304.08085. [Google Scholar]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022. [Google Scholar]
- Sun, Y.; Wang, S.; Feng, S.; Ding, S.; Pang, C.; Shang, J.; Liu, J.; Chen, X.; Zhao, Y.; Lu, Y.; et al. Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation. arXiv 2021, arXiv:2107.02137. [Google Scholar]
- Guo, D.; Zhu, Q.; Yang, D.; Xie, Z.; Dong, K.; Zhang, W.; Chen, G.; Bi, X.; Wu, Y.; Li, Y.; et al. DeepSeek-Coder: When the Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv 2024, arXiv:2401.14196. [Google Scholar]
- Meng, L.a.; Zhao, T.; Song, D. DS-Group at SIGHAN-2024 dimABSA Task: Constructing In-context Learning Structure for Dimensional Aspect-Based Sentiment Analysis. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 127–132. [Google Scholar]
- Wang, Z.; Zhang, Y.; Wang, J.; Xu, D.; Zhang, X. YNU-HPCC at SIGHAN-2024 dimABSA Task: Using PLMs with a Joint Learning Strategy for Dimensional Intensity Prediction. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 96–101. [Google Scholar]
- Kang, X.; Zhang, Z.; Zhou, J.; Wu, Y.; Shi, X.; Matsumoto, K. TMAK-Plus at SIGHAN-2024 dimABSA Task: Multi-Agent Collaboration for Transparent and Rational Sentiment Analysis. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 88–95. [Google Scholar]
- Jiang, Y.; Lu, H.Y. JN-NLP at SIGHAN-2024 dimABSA Task: Extraction of Sentiment Intensity Quadruples Based on Paraphrase Generation. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 121–126. [Google Scholar]
- Zhu, S.; Zhao, H.; Wxr, W.; Jia, Y.; Zan, H. ZZU-NLP at SIGHAN-2024 dimABSA Task: Aspect-Based Sentiment Analysis with Coarse-to-Fine In-context Learning. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 112–120. [Google Scholar]
- Tong, Z.; Wei, W. CCIIPLab at SIGHAN-2024 dimABSA Task: Contrastive Learning-Enhanced Span-based Framework for Chinese Dimensional Aspect-Based Sentiment Analysis. In Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10), Bangkok, Thailand, 11–16 August 2024; pp. 102–111. [Google Scholar]
- Zhang, J.; Gan, R.; Wang, J.; Zhang, Y.; Zhang, L.; Yang, P.; Gao, X.; Wu, Z.; Dong, X.; He, J.; et al. Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence. arXiv 2022, arXiv:2209.02970. [Google Scholar]
Subtask | Dataset | #Sent | #Char | #Tuple | Aspect | Opinion | |||
---|---|---|---|---|---|---|---|---|---|
#NULL | #Unique | #Repeat | #Unique | #Repeat | |||||
ST1 | train | 6050 | 85,769 | 8523 | 169 | 6430 | 1924 | - | - |
dev | 100 | 1.109 | 115 | 0 | 115 | 0 | - | - | |
test | 2000 | 34,002 | 2658 | 0 | 2658 | 0 | - | - | |
ST2 and ST3 | train | 6050 | 85,769 | 8523 | 169 | 6430 | 1924 | 7986 | 537 |
dev | 100 | 1280 | 150 | 0 | 78 | 72 | 143 | 7 | |
test | 2000 | 39,014 | 3566 | 52 | 1693 | 1821 | 3263 | 303 |
Methods | Subtask 1 | Subtask 2 | Subtask 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
V-MAE↓ | V-PCC↑ | A-MAE↓ | A-PCC↑ | V-T-F1↑ | A-T-F1↑ | VA-T-F1↑ | V-Q-F1↑ | A-Q-F1↑ | VA-Q-F1↑ | |
yangnan | 1.032 | 0.877 | 1.095 | 0.097 | - | - | - | - | - | - |
DS-Group | 0.460 | 0.858 | 0.501 | 0.490 | - | - | - | - | - | - |
YNU-HPCC | 0.294 | 0.917 | 0.318 | 0.771 | - | - | - | - | - | - |
TMAK-Plus | - | - | - | - | 0.269 | 0.307 | 0.157 | - | - | - |
USTC-IAT | - | - | - | - | - | - | - | 0.438 | 0.437 | 0.312 |
SUDA-NLP | - | - | - | - | 0.475 | 0.448 | 0.326 | 0.487 | 0.444 | 0.336 |
BIT-NLP | - | - | - | - | 0.490 | 0.450 | 0.342 | 0.470 | 0.434 | 0.329 |
JN-NLP | - | - | - | - | - | - | - | 0.482 | 0.439 | 0.331 |
ZZU-NLP | - | - | - | - | 0.542 | 0.507 | 0.389 | 0.522 | 0.489 | 0.376 |
CCIIPLab | 0.294 | 0.916 | 0.309 | 0.766 | 0.573 | 0.522 | 0.403 | 0.555 | 0.507 | 0.389 |
Ours | 0.279 | 0.933 | 0.309 | 0.777 | 0.589 | 0.545 | 0.433 | 0.567 | 0.526 | 0.417 |
Methods | Subtask 1 | Subtask 2 | Subtask 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
V-MAE↓ | V-PCC↑ | A-MAE↓ | A-PCC↑ | V-T-F1↑ | A-T-F1↑ | VA-T-F1↑ | V-Q-F1↑ | A-Q-F1↑ | VA-Q-F1↑ | |
BERTREG | 0.287 | 0.930 | 0.311 | 0.773 | 0.574 | 0.526 | 0.405 | 0.555 | 0.511 | 0.393 |
BERTCLS | 0.279 | 0.930 | 0.316 | 0.766 | 0.583 | 0.543 | 0.425 | 0.564 | 0.527 | 0.411 |
LLMINT | 0.367 | 0.884 | 0.394 | 0.683 | 0.530 | 0.498 | 0.392 | 0.512 | 0.482 | 0.379 |
LLMDEC | 0.294 | 0.919 | 0.331 | 0.738 | 0.457 | 0.437 | 0.312 | 0.443 | 0.426 | 0.302 |
Hybrid approach | 0.279 | 0.933 | 0.309 | 0.777 | 0.589 | 0.545 | 0.433 | 0.567 | 0.526 | 0.417 |
Methods | Type | V-Q-F1 | A-Q-F1 | VA-Q-F1 |
---|---|---|---|---|
Voting1 | BERT | 0.557 | 0.509 | 0.393 |
Voting2 | BERT&LLM | 0.563 | 0.526 | 0.413 |
Replace | BERT&LLM | 0.565 | 0.526 | 0.416 |
Pipeline | BERT&LLM | 0.567 | 0.526 | 0.417 |
Methods | Subtask 1 | Subtask 2 | Subtask 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
V-MAE↓ | V-PCC↑ | A-MAE↓ | A-PCC↑ | V-T-F1↑ | A-T-F1↑ | VA-T-F1↑ | V-Q-F1↑ | A-Q-F1↑ | VA-Q-F1↑ | |
BERTREG | 0.287 | 0.930 | 0.311 | 0.773 | 0.574 | 0.526 | 0.405 | 0.555 | 0.511 | 0.393 |
w/o pre-training | 0.294 | 0.924 | 0.313 | 0.771 | 0.565 | 0.520 | 0.401 | 0.544 | 0.502 | 0.386 |
w/o disabling-dropout | 0.337 | 0.933 | 0.348 | 0.779 | 0.537 | 0.503 | 0.365 | 0.521 | 0.487 | 0.354 |
w/o negative-pair | - | - | - | - | 0.567 | 0.518 | 0.399 | 0.549 | 0.502 | 0.387 |
Methods | Subtask 1 | Subtask 2 | Subtask 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
V-MAE↓ | V-PCC↑ | A-MAE↓ | A-PCC↑ | V-T-F1↑ | A-T-F1↑ | VA-T-F1↑ | V-Q-F1↑ | A-Q-F1↑ | VA-Q-F1↑ | |
LLMINT | 0.367 | 0.884 | 0.394 | 0.683 | 0.530 | 0.498 | 0.392 | 0.512 | 0.482 | 0.379 |
w/o multi-task | 0.381 | 0.876 | 0.406 | 0.632 | 0.535 | 0.481 | 0.381 | 0.514 | 0.464 | 0.367 |
w/o code prompt | 0.367 | 0.882 | 0.394 | 0.672 | 0.515 | 0.472 | 0.373 | 0.495 | 0.454 | 0.358 |
w/o beam search | 0.377 | 0.880 | 0.391 | 0.670 | 0.531 | 0.489 | 0.388 | 0.511 | 0.472 | 0.374 |
Model | Params | Valence | Arousal | ||
---|---|---|---|---|---|
MAE↓ | PCC↑ | MAE↓ | PCC↑ | ||
chinese-roberta-wwm-ext [89] | 102M | 0.300 | 0.918 | 0.310 | 0.766 |
ernie-3.0-base-zh [95] | 118M | 0.300 | 0.915 | 0.313 | 0.762 |
ernie-3.0-xbase-zh [95] | 296M | 0.286 | 0.926 | 0.309 | 0.776 |
erlangshen-deberta-v2-320m-chinese [103] | 320M | 0.284 | 0.930 | 0.310 | 0.774 |
chinese-roberta-ext-large [89] | 326M | 0.289 | 0.923 | 0.314 | 0.769 |
Aspect | Opinion | Pairing | Category | Valence | Arousal | |
---|---|---|---|---|---|---|
Error proportion | 18.68% | 21.78% | 2.34% | 4.48% | 25.90% | 26.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, H.; Zhang, D.; Xu, R. A Hybrid Approach to Dimensional Aspect-Based Sentiment Analysis Using BERT and Large Language Models. Electronics 2024, 13, 3724. https://doi.org/10.3390/electronics13183724
Zhang Y, Xu H, Zhang D, Xu R. A Hybrid Approach to Dimensional Aspect-Based Sentiment Analysis Using BERT and Large Language Models. Electronics. 2024; 13(18):3724. https://doi.org/10.3390/electronics13183724
Chicago/Turabian StyleZhang, Yice, Hongling Xu, Delong Zhang, and Ruifeng Xu. 2024. "A Hybrid Approach to Dimensional Aspect-Based Sentiment Analysis Using BERT and Large Language Models" Electronics 13, no. 18: 3724. https://doi.org/10.3390/electronics13183724
APA StyleZhang, Y., Xu, H., Zhang, D., & Xu, R. (2024). A Hybrid Approach to Dimensional Aspect-Based Sentiment Analysis Using BERT and Large Language Models. Electronics, 13(18), 3724. https://doi.org/10.3390/electronics13183724