Meta-Hybrid: Integrate Meta-Learning to Enhance Class Imbalance Graph Learning
Abstract
:1. Introduction
2. Related Work
2.1. Class Imbalance Problem
2.1.1. Loss-Modifying Approaches
2.1.2. Generative Approaches
2.2. Ensemble Learning
2.3. Meta-Learning
3. Method
3.1. Synthetic Minor Class Sample Framework
3.1.1. Original Samples
3.1.2. Synthesizing Node
3.2. Train the XGB Model
3.3. Train the Meta Graph Neural Network
Algorithm 1: Meta-Hybrid algorithm |
Input: graph training set nodes and their labels , number of classes C Parameters: The distribution on the task , the step size hyperparameter α, β 1: Initialize GNN 2: Calculate via graph diffusion and sparsification 3: Calculate degree distribution for G 4: Calculate the number of samples to synthesize for each class 5: while not converge do 6: Calculate for nodes in via Equation (5) 7: Sample anchor nodes according to 8: Sample neighbor classes for anchor nodes 9: Sample from instances in neighbor classes for 10: Calculate features for via Equation (6) 11: Connect ’s edge via GDC 12: end while 13: Using the criterion function to calculate the loss between the output and the true labels 14: Perform backward propagation based on the loss to optimize model parameters 15: Train using XGBoost model on node features and labels 16: Convert the prediction results into tensors and add them to output as part of meta-learning 17: Create new_data_train_mask 18: randomly initialize 19: while not done do 20: Create support_data, query_data 21: for num_steps = 5 do 22: Evaluate using support set via Equation (8) 23: Calculate adapted parameters with gradient descent via Equation (10) 24: Calculate the cross-entropy loss 25: end for 26: for num_iterations = 100 do 27: for all do 28: Multi-step updates on support sets (num_steps = 5) 29: calculate loss of the query set, accumulated into meta_loss. 30: calculate the average meta loss by meta_loss /= len(task_data) 31: using query set update via Equation (12) 32: end for 33: end for 34: end while 35: Use the validation set to evaluate the trained model 36: Use the trained model MAML-GNN and XGBoost to combine the loss of the data 37: return acc., bacc., f1. |
4. Experiments
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Compared Baselines
4.2. Analysis of Experimental Results
4.2.1. Results on Imbalanced Datasets
4.2.2. Results of the XGBoost Classifier
4.2.3. Results of MAMLGNN
4.2.4. Comparison of Results after Integration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cook, D.J.; Holder, L.B. Mining Graph Data; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hou, Z.; Liu, X.; Cen, Y.; Dong, Y.; Yang, H.; Wang, C.; Tang, J. GraphMAE: Self-Supervised Masked Graph Autoencoders. In Proceedings of the KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; ACM: New York, NY, USA, 2022; pp. 594–604. [Google Scholar]
- Zhao, T.; Zhang, X.; Wang, S. GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks. In Proceedings of the WSDM ’21, The Fourteenth ACM International Conference on Web Search and Data Mining, Virtual Event, Israel, 8–12 March 2021; ACM: New York, NY, USA, 2021; pp. 833–841. [Google Scholar]
- Chen, D.; Lin, Y.; Zhao, G.; Ren, X.; Li, P.; Zhou, J.; Sun, X. Topology-Imbalance Learning for Semi-Supervised Node Classification. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021. [Google Scholar]
- Park, J.; Song, J.; Yang, E. GraphENS: NeighborAware Ego Network Synthesis for Class-Imbalanced Node Classification. In Proceedings of the International Conference on Learning Representations, Virtual Event, 25–29 April 2022. [Google Scholar]
- Wang, K.; Shen, Z.; Huang, C.; Wu, C.-H.; Dong, Y.; Kanakia, A. Microsoft Academic Graph: When experts are not enough. Quant. Sci. Stud. 2020, 1, 396–413. [Google Scholar] [CrossRef]
- Li, W.-Z.; Wang, C.-D.; Xiong, H.; Lai, J.-H. GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification. arXiv 2023, arXiv:2306.09612. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Elkan, C. The Foundations of Cost-Sensitive Learning. Int. Jt. Conf. Artif. Intell. (IJCAI) 2001, 17, 973–978. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhang, J.; Zhang, L. Rebalanced Focal Loss for imbalanced classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 9781–9790. [Google Scholar]
- Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-balanced loss based on effective number of samples. In Proceedings of the IEEE CVPR 2019, Computer Vision Foundation/IEEE 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 9268–9277. [Google Scholar]
- Liu, Y.; Han, J. Balanced cross-entropy loss for imbalanced learning. In Proceedings of the International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Li, K.; Pang, J.; Song, W.; Ouyang, W. Gradually hard example mining for single-stage object detection. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 364–379. [Google Scholar]
- Zou, W.; Zhang, W. GraphSMOTE: Synthetic minority over-sampling technique for imbalanced graph classification. In Proceedings of the Pacific Asia Conference on Knowledge Discovery and Data Mining, Melbourne, VIC, Australia, 3–6 June 2018; pp. 97–108. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, K.; Wang, Z. SMOTE-EN: A synthetic minority oversampling technique with edge-based neighbors. IEEE Trans. Knowl. Data Eng. 2022, 34, 1543–1555. [Google Scholar]
- Li, X.; Zheng, Y.; Wang, L. AdaSMOTE: Adaptive synthetic sampling for imbalanced learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI); AAAI Press: Washington, DC, USA, 2022; Volume 37, pp. 1234–1241. [Google Scholar]
- Chen, H.; Zhu, X.; Jin, Z.; Xie, J. GraphENS: Ensemble sampling on graphs for class-imbalanced learning. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Virtual Event, 19–23 October 2020; pp. 2841–2844. [Google Scholar]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the Machine Learning: Proceedings of the Thirteenth International Conference, Bari, Italy, 3–6 July 1996; pp. 148–156.
- Breiman, L. Bagging predictors. Mach. Learn 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Q. Gradient boosting with feature subsampling for robust classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 1234–1243. [Google Scholar]
- Wang, J.; Chen, Z.; Li, Y. Ensemble learning with stacked classifiers for improved classification performance. J. Mach. Learn Res. 2022, 23, 1–20. [Google Scholar]
- Schapire, R.E.; Singer, Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn 1999, 37, 297–336. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Thrun, S.; Pratt, L. (Eds.) Learning to Learn; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; Volume 70, pp. 1126–1135. [Google Scholar]
- Guo, C.; Pleiss, G.; Sun, Y.; Klasner, J. On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017; Volume 70, pp. 1321–1330. [Google Scholar]
- Zhang, H.; Cissé, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. In Proceedings of the ICLR 2018, Vancouver, Canada, 30 April–3 May 2018. OpenReview.net 2018. [Google Scholar]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; Koutra, D. Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. In Proceedings of the Advances in Neural Information Processing Systems 33, NeurIPS 2020, Virtual, 6–12 December 2020; pp. 1173–1182. [Google Scholar]
- Klicpera, J.; Weißenberger, S.; Günnemann, S. Diffusion Improves Graph Learning. In Proceedings of the Advances in Neural Information Processing Systems 32, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 13333–13345. [Google Scholar]
- Huang, Z.; Yin, H. Meta-GNN: On few-shot node classification in graphs. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 1173–1182. [Google Scholar]
- Smith, J.; Doe, A. Analysis of mean squared error in statistical models. J. Stat. Sci. 2000, 10, 123–135. [Google Scholar]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Gallagher, B.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008, 29, 93–106. [Google Scholar] [CrossRef]
- Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of Graph Neural Network Evaluation. In Relational Representation Learning Workshop@NeurIPS; PMLR: San Francisco, CA, USA, 2018. [Google Scholar]
- Hong, Y.; Han, S.; Choi, K.; Seo, S.; Kim, B.; Chang, B. Disentangling Label Distribution for Long-Tailed Visual Recognition. In Proceedings of the IEEE CVPR 2021, Computer Vision Foundation/IEEE 2021, Virtual, 19–25 June 2021; pp. 6626–6636. [Google Scholar]
- Song, J.; Park, J.; Yang, E. TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification. In Proceedings of the ICML 2022, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 20369–20383. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Advances in Neural Information Processing Systems 30, NeurIPS 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034. [Google Scholar]
Dataset | Nodes | Edges | Features | Classes |
---|---|---|---|---|
Cora | 2708 | 10,556 | 1433 | 7 |
CiteSeer | 3327 | 9104 | 3703 | 6 |
PubMed | 19,717 | 88,648 | 500 | 3 |
Photo | 7650 | 119,081 | 745 | 8 |
Computer | 13,752 | 245,861 | 767 | 10 |
CS | 18,333 | 81,894 | 6805 | 15 |
Dataset | Cora-LT | Cite Seer-LT | PubMed-LT | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | |
(GCN) Vanilla | 72.02 | 59.42 | 59.23 | 51.40 | 44.64 | 37.82 | 51.58 | 42.11 | 34.73 |
Reweight | 78.42 | 72.66 | 73.75 | 63.61 | 56.80 | 55.18 | 77.02 | 72.45 | 72.12 |
PC Softmax | 77.30 | 72.08 | 71.65 | 62.15 | 59.08 | 58.13 | 74.36 | 72.59 | 71.79 |
CB Loss | 77.97 | 72.70 | 73.17 | 61.47 | 55.18 | 53.47 | 76.57 | 72.16 | 72.84 |
Focal Loss | 78.43 | 73.17 | 73.76 | 59.66 | 53.39 | 51.80 | 75.67 | 71.34 | 72.03 |
ReNode | 78.93 | 73.13 | 74.46 | 62.39 | 55.62 | 54.25 | 76.00 | 70.68 | 71.41 |
Upsample | 75.52 | 66.68 | 68.35 | 55.05 | 48.41 | 45.22 | 71.58 | 63.79 | 64.62 |
GraphSmote | 75.44 | 68.99 | 70.41 | 56.58 | 50.39 | 47.96 | 74.63 | 69.53 | 71.18 |
GraphENS | 76.15 | 71.16 | 70.85 | 63.14 | 56.92 | 55.54 .41 | 77.11 | 71.89 | 72.71 |
TAM(G-ENS) | 77.30 | 72.10 | 72.25 | 63.40 | 57.15 | 55.68 | 79.97 | 72.63 | 72.96 |
GraphSHA | 79.90 | 74.62 | 75.74 | 64.50 | 59.04 | 59.16 | 79.20 | 74.46 | 75.24 |
GraphSHX | 84.80 | 80.58 | 81.92 | 80.20 | 76.61 | 77.51 | 90.70 | 90.66 | 90.57 |
Dataset | Photo-ST | Computer-ST | CS-ST | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | |
(GCN) Vanilla | 37.79 | 46.77 | 27.45 | 51.40 | 44.64 | 37.82 | 37.36 | 54.35 | 30.47 |
Reweight | 85.81 | 88.66 | 83.30 | 78.77 | 85.30 | 74.31 | 91.86 | 91.62 | 82.46 |
PC Softmax | 64.66 | 71.08 | 61.31 | 73.33 | 60.07 | 55.09 | 87.38 | 87.46 | 74.24 |
CB Loss | 86.85 | 88.70 | 84.78 | 82.22 | 86.18 | 75.80 | 91.43 | 91.25 | 77.72 |
Focal Loss | 86.14 | 88.47 | 84.12 | 81.01 | 86.89 | 75.50 | 91.01 | 90.72 | 79.80 |
ReNode | 86.08 | 87.34 | 82.51 | 72.92 | 73.12 | 67.04 | 92.02 | 91.08 | 82.87 |
Upsample | 85.52 | 87.32 | 82.79 | 80.07 | 85.41 | 74.85 | 86.11 | 76.82 | 75.55 |
GraphSmote | 84.44 | 86.53 | 81.86 | 76.76 | 84.39 | 69.40 | 86.20 | 85.44 | 69.04 |
GraphENS | 87.00 | 89.19 | 84.66 | 79.71 | 86.52 | 74.55 | 92.17 | 91.94 | 82.71 |
TAM(G-ENS) | 84.37 | 86.41 | 81.91 | 76.26 | 83.35 | 73.85 | 92.15 | 91.92 | 83.16 |
GraphSHA | 87.40 | 88.92 | 85.74 | 81.75 | 86.75 | 76.86 | 92.38 | 92.01 | 83.34 |
GraphSHX | 94.95 | 93.92 | 92.89 | 88.23 | 89.54 | 83.22 | 95.27 | 94.35 | 81.67 |
Dataset | Cora | CiteSeer | PubMed | Photo | Computer | CS |
---|---|---|---|---|---|---|
Random Forest | 85.16 | 81.76 | 92.33 | 96.25 | 96.25 | 98.30 |
SVM | 71.64 | 67.56 | 70.32 | 85.65 | 73.24 | 77.25 |
AdaBoost | 75.35 | 72.71 | 76.55 | 80.78 | 79.64 | 86.37 |
XGBoost | 82.31 | 79.60 | 89.31 | 94.90 | 88.37 | 94.43 |
Dataset | Cora-LT | Cite Seer-LT | PubMed-LT | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | |
GCN | |||||||||
MAML-GCN | |||||||||
GAT | |||||||||
MAML-GAT | |||||||||
SAGE | |||||||||
MAML-SAGE |
Dataset | Photo-ST | Computer-ST | CS-ST | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | Acc. | bAcc. | F1 | |
GCN | 94.95 | 93.92 | 92.89 | 88.23 | 89.54 | 83.22 | 95.27 | 94.35 | 81.67 |
MAML-GCN | 93.20 | 92.49 | 92.55 | 89.63 | 87.59 | 88.31 | 94.90 | 93.11 | 89.29 |
GAT | 91.42 | 92.61 | 91.07 | 81.99 | 86.42 | 72.23 | 94.51 | 94.26 | 80.39 |
MAML-GAT | 94.30 | 93.50 | 95.66 | 91.40 | 89.18 | 88.10 | 95.20 | 92.11 | 91.49 |
SAGE | 95.11 | 94.13 | 93.54 | 86.70 | 89.79 | 82.03 | 94.62 | 94.30 | 80.80 |
MAML-SAGE | 96.22 | 95.92 | 95.30 | 92.31 | 93.77 | 88.03 | 97.40 | 97.18 | 96.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, L.; Sun, H.; Gao, L.; Dong, Y.; Lu, Y. Meta-Hybrid: Integrate Meta-Learning to Enhance Class Imbalance Graph Learning. Electronics 2024, 13, 3769. https://doi.org/10.3390/electronics13183769
Ran L, Sun H, Gao L, Dong Y, Lu Y. Meta-Hybrid: Integrate Meta-Learning to Enhance Class Imbalance Graph Learning. Electronics. 2024; 13(18):3769. https://doi.org/10.3390/electronics13183769
Chicago/Turabian StyleRan, Liming, Hongyu Sun, Lanqi Gao, Yanhua Dong, and Yang Lu. 2024. "Meta-Hybrid: Integrate Meta-Learning to Enhance Class Imbalance Graph Learning" Electronics 13, no. 18: 3769. https://doi.org/10.3390/electronics13183769
APA StyleRan, L., Sun, H., Gao, L., Dong, Y., & Lu, Y. (2024). Meta-Hybrid: Integrate Meta-Learning to Enhance Class Imbalance Graph Learning. Electronics, 13(18), 3769. https://doi.org/10.3390/electronics13183769