Construction and Explanation Analysis of a Hypotension Risk Prediction Model in Hemodialysis Based on Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Definition of IDH
2.3. Data Preprocessing
2.4. Models and Methods
3. Experimental Results and Analysis
3.1. Evaluation Indicators
3.2. Statistical Analysis
3.3. Feature Importance Assessment
3.4. Model Prediction Results
3.5. Model Interpretability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Knoll, G.A.; Grabowski, J.A.; Dervin, G.F.; O’Rourke, K. A randomized, controlled trial of albumin versus saline for the treatment of intradialytic hypotension. J. Am. Soc. Nephrol. 2004, 15, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Reilly, R.F. Attending rounds: A patient with intradialytic hypotension. Clin. J. Am. Soc. Nephrol. 2014, 9, 798–803. [Google Scholar] [CrossRef]
- Zager, P.G.; Nikolic, J.; Brown, R.H.; Campbell, M.A.; Hunt, W.C.; Peterson, D.; Stone, J.V.; Levey, A.; Meyer, K.B.; Klag, M.J.; et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical Directors of Dialysis Clinic, Inc. Kidney Int. 1998, 54, 561–569. [Google Scholar] [CrossRef]
- Dasgupta, I.; Thomas, G.N.; Clarke, J.; Sitch, A.; Martin, J.; Bieber, B.; Manfred, H.; Angelo, K.; Ronald, P.; Friedrich, P.; et al. Associations between hemodialysis facility practices to manage fluid volume and intradialytic hypotension and patient outcomes. Clin. J. Am. Soc. Nephrol. 2019, 14, 385–393. [Google Scholar] [CrossRef]
- Stefánsson, B.V.; Brunelli, S.M.; Cabrera, C.; Rosenbaum, D.; Anum, E.; Ramakrishnan, K.; Jensen, D.E.; Stålhammar, N.-O. Intradialytic hypotension and risk of cardiovascular disease. Clin. J. Am. Soc. Nephrol. 2014, 9, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Vilar, E.; Davenport, A.; Farrington, K. Incremental hemodialysis. Nephrol. Dial. Transplant. 2015, 30, 1639–1648. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Regidor, D.L.; Kovesdy, C.P.; Van Wyck, D.; Bunnapradist, S.; Horwich, T.B.; Fonarow, G.C. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation 2009, 119, 671–679. [Google Scholar] [CrossRef]
- Dubin, R.; Owens, C.; Gasper, W.; Ganz, P.; Johansen, K. Associations of endothelial dysfunction and arterial stiffness with intradialytic hypotension and hypertension. Hemodial. Int. 2011, 15, 350–358. [Google Scholar] [CrossRef]
- Inrig, J.K.; Van Buren, P.; Kim, C.; Vongpatanasin, W.; Povsic, T.J.; Toto, R. Probing the mechanisms of intradialytic hypertension: A pilot study targeting endothelial cell dysfunction. Clin. J. Am. Soc. Nephrol. 2012, 7, 1300–1309. [Google Scholar] [CrossRef]
- Shamir, A.R.; Karembelkar, A.; Yabes, J.; Yao, Y.; Miskulin, D.; Gassman, J.; Ploth, D.; Negrea, L.; Paine, S.; Rahman, M.; et al. Association of Intradialytic Hypertension with Left Ventricular Mass in Hypertensive Hemodialysis Patients Enrolled in the Blood Pressure in Dialysis (BID) Study. Kidney Blood Press Res. 2018, 43, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, J.; Oosterhuis, J.K.; Krijnen, W.P.; Dasselaar, J.J.; Gaillard, C.A.; Westerhuis, R.; Franssen, C.F. Prevalence of intradialytic hypotension, clinical symptoms and nursing interventions-a three-months, prospective study of 3818 haemodialysis sessions. BMC Nephrol. 2016, 17, 21. [Google Scholar] [CrossRef]
- Chou, J.A.; Kalantar-Zadeh, K.; Mathew, A.T. A brief review of intradialytic hypotension with a focus on survival. Semin. Dial. 2017, 30, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Okoye, O.C.; Slater, H.E.; Rajora, N. Prevalence and risk factors of intra-dialytic hypotension: A 5 year retrospective report from a single Nigerian Centre. Pan Afr. Med. J. 2017, 28, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, H.; She, C.; Feng, J.; Liu, X.; Hu, X.; Chen, L.; Tao, Y. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front. Endocrinol. 2022, 13, 946915. [Google Scholar] [CrossRef]
- Dack, E.; Christe, A.; Fontanellaz, M.; Brigato, L.; Heverhagen, J.T.; Peters, A.A.; Huber, A.T.; Hoppe, H.; Mougiakakou, S.; Ebner, L. Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis. Investig. Radiol. 2023, 58, 602–609. [Google Scholar] [CrossRef]
- Obrezanova, O. Artificial intelligence for compound pharmacokinetics prediction. Curr. Opin. Struct. Biol. 2023, 79, 102546. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Huang, C.; Liang, J.X.; Slomka, P.J. Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology. J. Nucl. Cardiol. 2022, 29, 1754–1762. [Google Scholar] [CrossRef]
- Dinesh, K.; Kunaparaju, S.; Cape, K.; Flythe, J.E.; Feldman, H.I.; Brunelli, S.M. A model of systolic blood pressure during the course of dialysis and clinical factors associated with various blood pressure behaviors. Am. J. Kidney Dis. 2011, 58, 794–803. [Google Scholar] [CrossRef]
- Lin, C.J.; Chen, Y.Y.; Pan, C.F.; Wu, V.; Wu, C.J. Dataset supporting blood pressure prediction for the management of chronic hemodialysis. Sci. Data 2019, 6, 313. [Google Scholar] [CrossRef]
- National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 update. Am. J. Kidney Dis. 2015, 66, 884–930. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.; Dakshanamurthy, S. Predicting chemical carcinogens using a hybrid neural network deep learning method. Sensors 2022, 22, 8185. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lu, X. Development and validation of an XGBoost model to predict 5-year survival in elderly patients with intrahepatic cholangiocarcinoma after surgery: A SEER-based study. J. Gastrointest. Oncol. 2022, 13, 3290–3299. [Google Scholar] [CrossRef]
- Ventrella, P.; Delgrossi, G.; Ferrario, G.; Righetti, M.; Masseroli, M. Supervised machine learning for the assessment of Chronic Kidney Disease advancement. Comput. Methods Programs Biomed. 2021, 209, 106329. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Paik, J.; Greene, T.; Desai, M.; Bech, F.; Cheung, A.K.; Chertow, G.M. Intradialytic hypotension and vascular access thrombosis. J. Am. Soc. Nephrol. 2011, 22, 1526–1533. [Google Scholar] [CrossRef]
- Sands, J.J.; Usvyat, L.A.; Sullivan, T.; Segal, J.H.; Zabetakis, P.; Kotanko, P.; Maddux, F.W.; Diaz-Buxo, J.A. Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome. Hemodial. Int. 2014, 18, 415–422. [Google Scholar] [CrossRef]
- Gabutti, L.; Vadilonga, D.; Mombelli, G.; Burnier, M.; Marone, C. Artificial neural networks improve the prediction of Kt/V, follow-up dietary protein intake and hypotension risk in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-J.; Chen, C.-Y.; Wu, P.-C.; Pan, C.-F.; Shih, H.-M.; Huang, M.-Y.; Chou, L.-H.; Tang, J.-S.; Wu, C.-J. Intelligent system to predict intradialytic hypotension in chronic hemodialysis. J. Formos. Med. Assoc. 2018, 117, 888–893. [Google Scholar] [CrossRef]
- Gómez-Pulido, J.A.; Gómez-Pulido, J.M.; Rodríguez-Puyol, D.; Polo-Luque, M.-L.; Vargas-Lombardo, M. Predicting the appearance of hypotension during hemodialysis sessions using machine learning classifiers. Int. J. Environ. Res. Public Health 2021, 18, 2364. [Google Scholar] [CrossRef]
- Lee, H.; Yun, D.; Yoo, J.; Yoo, K.; Kim, Y.C.; Kim, D.K.; Oh, K.-H.; Joo, K.W.; Kwak, N.; Han, S.S. Deep learning model for real-time prediction of intradialytic hypotension. Clin. J. Am. Soc. Nephrol. 2021, 16, 396–406. [Google Scholar] [CrossRef]
- Huang, J.-C.; Tsai, Y.-C.; Wu, P.-Y.; Lien, Y.-H.; Chien, C.-Y.; Kuo, C.-F.; Hung, J.-F.; Chen, S.-C.; Kuo, C.-H. Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Comput. Methods Programs Biomed. 2020, 195, 105536. [Google Scholar] [CrossRef] [PubMed]
Category | Features |
---|---|
Demographic features | Age, Pre-dialysis weight, Dialysis age |
Clinical features | |
Comorbidities | Diabetes |
Hemodialysis records | Dialysis duration, Temperature, Ultrafiltration rate, Pre-dialysis SBP, Pre-dialysis DBP, Pre-dialysis MAP, Dialysate temperature, Conductivity, Blood flow |
Features | non-IDH Group (n = 1,625,697) | IDH Group (n = 602,953) | p Value |
---|---|---|---|
Dialysate temperature | 36.5 (33.3–39.0) | 36.4 (39.5–34.2) | <0.001 |
Conductivity | 14.0 (10.0–20.0) | 14.1 (10.0–20.0) | <0.001 |
Ultrafiltration rate | 0.5 (0–3.0) | 0.5 (0–3.0) | <0.001 |
Blood flow | 188.5 (0–400.0) | 196.0 (0–400.0) | 0.005 |
Dialysis duration | 83.1 (0–284.0) | 145.7 (0–370.0) | <0.001 |
Diabetes | 36.8 (31.7–40.4) | 36.8 (33.1–39.9) | <0.001 |
Pre-dialysis weight | 60.2 (30.6–172.7) | 61.8 (30.6–172.7) | <0.001 |
Temperature | 36.4 (35.0–39.5) | 36.4 (35.0–39.4) | <0.001 |
Dialysis age | 80.0 (0–332.2) | 79.5 (0–329.9) | <0.001 |
Age | 66.5 (18.1-94.4) | 66.7 (18.1–94.4) | <0.001 |
Pre-dialysis SBP | 140.4 (46.0–200.0) | 158.6 (70.0–200.0) | <0.001 |
Pre-dialysis MAP | 92.0 (36.7–187.3) | 103.9 (46.7–187.3) | <0.001 |
Pre-dialysis DBP | 67.8 (30.0–184.0) | 76.5 (30.0–184.0) | <0.001 |
Models | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
ExtraTrees | 0.99 (0.98–1.00) | 1.00 (0.99–1.00) | 0.98 (0.97–0.99) | 0.99 (0.98–1.00) | 1.00 (0.99–1.00) |
XGBOOST | 0.90 (0.88–0.92) | 0.88 (0.87–0.90) | 0.75 (0.73–0.77) | 0.81 (0.80–0.82) | 0.96 (0.94–0.97) |
KNN | 0.88 (0.86–0.90) | 0.83 (0.81–0.85) | 0.74 (0.73–0.75) | 0.78 (0.76–0.80) | 0.95 (0.94–0.97) |
Random Forest | 0.87 (0.85–0.89) | 0.85 (0.84–0.87) | 0.61 (0.59–0.63) | 0.71 (0.69–0.73) | 0.93 (0.91–0.95) |
AdaBoost | 0.79 (0.77–0.81) | 0.66 (0.65–0.68) | 0.44 (0.42–0.46) | 0.53 (0.52–0.54) | 0.81 (0.79–0.82) |
Logistic | 0.78 (0.76–0.80) | 0.65 (0.63–0.67) | 0.40 (0.38–0.42) | 0.50 (0.49–0.51) | 0.79 (0.78–0.81) |
Models | Accuracy | Precision | Recall | F1 Score | AUC |
---|---|---|---|---|---|
ExtraTrees | 0.92 (0.90–0.94) | 0.87 (0.85–0.89) | 0.81 (0.79–0.83) | 0.84 (0.82–0.86) | 0.95 (0.94–0.96) |
XGBOOST | 0.89 (0.87–0.91) | 0.84 (0.82–0.86) | 0.71 (0.70–0.73) | 0.77 (0.75–0.79) | 0.94 (0.92–0.96) |
KNN | 0.84 (0.82–0.86) | 0.72 (0.71–0.73) | 0.64 (0.63–0.65) | 0.68 (0.67–0.69) | 0.87 (0.85–0.89) |
Random Forest | 0.85 (0.83–0.87) | 0.81 (0.80–0.83) | 0.57 (0.56–0.58) | 0.67 (0.65–0.69) | 0.90 (0.88–0.91) |
AdaBoost | 0.79 (0.78–0.81) | 0.66 (0.65–0.67) | 0.44 (0.42–0.45) | 0.53 (0.51–0.55) | 0.81 (0.80–0.83) |
Logistic | 0.78 (0.76–0.79) | 0.65 (0.64–0.67) | 0.39 (0.37–0.41) | 0.49 (0.47–0.51) | 0.79 (0.78–0.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, T. Construction and Explanation Analysis of a Hypotension Risk Prediction Model in Hemodialysis Based on Machine Learning. Electronics 2024, 13, 3773. https://doi.org/10.3390/electronics13183773
Zhang M, Zhang T. Construction and Explanation Analysis of a Hypotension Risk Prediction Model in Hemodialysis Based on Machine Learning. Electronics. 2024; 13(18):3773. https://doi.org/10.3390/electronics13183773
Chicago/Turabian StyleZhang, Mingwei, and Tianyi Zhang. 2024. "Construction and Explanation Analysis of a Hypotension Risk Prediction Model in Hemodialysis Based on Machine Learning" Electronics 13, no. 18: 3773. https://doi.org/10.3390/electronics13183773
APA StyleZhang, M., & Zhang, T. (2024). Construction and Explanation Analysis of a Hypotension Risk Prediction Model in Hemodialysis Based on Machine Learning. Electronics, 13(18), 3773. https://doi.org/10.3390/electronics13183773