Blockchain Bottleneck Analysis Based on Performance Metrics Causality
Abstract
:1. Introduction
- This paper proposes 18 fine-grained performance metrics on contract, network, data, consensus, and system layers for comprehensively evaluating the performance of blockchain systems under different conditions.
- Given the limitations of existing performance collection tools, this paper provides a generalized loosely coupled measurement framework to obtain comprehensive, fine-grained blockchain performance metrics for different blockchain implementations, including ChainMaker [6], Ethereum [19], and FISCO BCOS [20], and the framework’s impact on ChainMaker is less than 15%.
- This paper conducts causal inference analysis on performance metrics, constructing the mesoscopic performance structure between performance metrics, and delves into the relationships, providing a different perspective for understanding the behavior of blockchain systems and potential bottleneck issues.
- Extensive experiments demonstrate that our approach can identify causality between performance metrics when the system reaches a bottleneck.
2. Related Work
2.1. Performance Bottlenecks
2.2. Blockchain Performance Framework
3. Method
3.1. Microscopic Performance Metrics
3.1.1. Consensus Layer
3.1.2. Network Layer
3.1.3. Storage Layer
3.1.4. Contract Layer
3.1.5. System Layer
3.2. Generalized Loosely Coupled Measurement Framework
- The definition layer defines the micro-performance metrics measurements in an object-oriented manner and maps them to the actual stored files. Suppose the corresponding performance metrics file does not exist in the specified directory. In that case, the framework generates the corresponding performance metrics file and initializes the table header according to its object definition.
- The data storage layer stores vast raw data points for calculating performance metrics, facilitating rapid data input sequences. Asynchronous write operations are safely implemented through encapsulated routines to minimize the impact of parallel write operations on the primary process and ensure compatibility with its exception handling.
- The configuration layer facilitates the configuration, loading, and deployment of raw data points sampling for each node and performance metrics through global and local switches, offering runtime flexibility.
- The processing layer hosts an indicator measurement library and a performance measurement thread pool, ensuring real-time calculation of raw data points obtained by the data storage layer to derive real-time estimates of performance metrics.
3.3. Mesoscopic Performance Structure
Algorithm 1 A approach for constructing the causality graph of mesoscopic performance structure |
Input: Performance metrics Data D Output: Causality graph
|
Algorithm 2 AggregateWeights |
Input: Set of causal graphs Γ Output: Weight sets for causal graph W
|
4. Results
4.1. Experiment Setup
4.1.1. Experiment Settings
4.1.2. Metrics
4.2. Framework Evaluation
4.3. Bottleneck Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shalaby, S.; Abdellatif, A.A.; Al-Ali, A.; Mohamed, A.; Erbad, A.; Guizani, M. Performance evaluation of hyperledger fabric. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 608–613. [Google Scholar]
- Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1085–1100. [Google Scholar]
- Alom, I.; Ferdous, M.S.; Chowdhury, M.J.M. Blockmeter: An application agnostic performance measurement framework for private blockchain platforms. IEEE Trans. Serv. Comput. 2023, 16, 3879–3891. [Google Scholar] [CrossRef]
- Fischl, W.; Gottlob, G.; Longo, D.M.; Pichler, R. Hyperbench: A benchmark and tool for hypergraphs and empirical findings. J. Exp. Algorithmics 2021, 26, 1–40. [Google Scholar] [CrossRef]
- Cheng, Y.; Wei, K.; Zhang, Y.; Jiang, C.; Pang, W.; Zhang, Q.; Liu, B.; Zhang, L.; Liu, T.; Wu, Y. TrustedBench: An Efficient and User-friendly Distributed Performance Testing Tool for Blockchain System. In Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Exeter, UK, 1–3 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 2141–2146. [Google Scholar]
- Chainmaker. 2021. Available online: https://chainmaker.org.cn/ (accessed on 27 January 2021).
- Alaa, A.M.; van der Schaar, M. Bayesian nonparametric causal inference: Information rates and learning algorithms. IEEE J. Sel. Top. Signal Process. 2018, 12, 1031–1046. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Roy, S.; Kalita, J. Assessing the effectiveness of causality inference methods for gene regulatory networks. IEEE/Acm Trans. Comput. Biol. Bioinform. 2018, 17, 56–70. [Google Scholar] [CrossRef]
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate research using graphical models. J. Clim. 2012, 25, 5648–5665. [Google Scholar] [CrossRef]
- Ponnapalli, S.; Shah, A.; Banerjee, S.; Malkhi, D.; Tai, A.; Chidambaram, V.; Wei, M. {RainBlock}: Faster transaction processing in public blockchains. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC 21), Online, 14–16 July 2021; pp. 333–347. [Google Scholar]
- Schölkopf, B.; Locatello, F.; Bauer, S.; Ke, N.R.; Kalchbrenner, N.; Goyal, A.; Bengio, Y. Toward causal representation learning. Proc. IEEE 2021, 109, 612–634. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, K.; Zhang, J.; Ramsey, J.; Sanchez-Romero, R.; Glymour, C.; Schölkopf, B. Causal discovery from heterogeneous/nonstationary data. J. Mach. Learn. Res. 2020, 21, 1–53. [Google Scholar]
- Cheng, Y.; Yang, R.; Xiao, T.; Li, Z.; Suo, J.; He, K.; Dai, Q. Cuts: Neural causal discovery from irregular time-series data. arXiv 2023, arXiv:2302.07458. [Google Scholar]
- Cheng, Y.; Li, L.; Xiao, T.; Li, Z.; Suo, J.; He, K.; Dai, Q. CUTS+: High-dimensional causal discovery from irregular time-series. Proc. AAAI Conf. Artif. Intell. 2024, 38, 11525–11533. [Google Scholar] [CrossRef]
- Aslanidis, N.; Bariviera, A.F.; Martínez-Ibañez, O. An analysis of cryptocurrencies conditional cross correlations. Financ. Res. Lett. 2019, 31, 130–137. [Google Scholar] [CrossRef]
- Kim, M.J.; Canh, N.P.; Park, S.Y. Causal relationship among cryptocurrencies: A conditional quantile approach. Financ. Res. Lett. 2021, 42, 101879. [Google Scholar]
- Azqueta-Gavaldón, A. Causal inference between cryptocurrency narratives and prices: Evidence from a complex dynamic ecosystem. Phys. Stat. Mech. Its Appl. 2020, 537, 122574. [Google Scholar]
- Yousaf, I.; Gubareva, M.; Teplova, T. Connectedness of non-fungible tokens and conventional cryptocurrencies with metals. N. Am. J. Econ. Financ. 2023, 68, 101995. [Google Scholar]
- Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32. [Google Scholar]
- Li, H.; Chen, Y.; Shi, X.; Bai, X.; Mo, N.; Li, W.; Guo, R.; Wang, Z.; Sun, Y. FISCO-BCOS: An Enterprise-grade Permissioned Blockchain System with High-performance. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 1–17. [Google Scholar]
- Voronov, T.; Raz, D.; Rottenstreich, O. A framework for anomaly detection in blockchain networks with sketches. IEEE/ACM Trans. Netw. 2023, 32, 686–698. [Google Scholar]
- Liu, C.; Xu, Y.; Sun, Z. Directed dynamic attribute graph anomaly detection based on evolved graph attention for blockchain. Knowl. Inf. Syst. 2024, 66, 989–1010. [Google Scholar]
- Wen, Y.F.; Hsu, C.M. A performance evaluation of modular functions and state databases for Hyperledger Fabric blockchain systems. J. Supercomput. 2023, 79, 2654–2690. [Google Scholar]
- Hao, Y.; Li, Y.; Dong, X.; Fang, L.; Chen, P. Performance analysis of consensus algorithm in private blockchain. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 280–285. [Google Scholar]
- Alqahtani, S.; Demirbas, M. Bottlenecks in blockchain consensus protocols. In Proceedings of the 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 23–25 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Korkmaz, K.; Bruneau-Queyreix, J.; Mokhtar, S.B.; Réveillère, L. ALDER: Unlocking blockchain performance by multiplexing consensus protocols. In Proceedings of the 2022 IEEE 21st International Symposium on Network Computing and Applications (NCA), Boston, MA, USA, 14–16 December 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 21, pp. 9–18. [Google Scholar]
- Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Gün Sirer, E.; et al. On Scaling Decentralized Blockchains: (A Position Paper). In Proceedings of the International Conference on Financial Cryptography and Data Security, Christ Church, Barbados, 22–26 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106–125. [Google Scholar]
- Wang, C.; Chu, X. Performance characterization and bottleneck analysis of hyperledger fabric. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November 2020–1 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1281–1286. [Google Scholar]
- Thakkar, P.; Nathan, S.; Viswanathan, B. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 25–28 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 264–276. [Google Scholar]
- Xu, X.; Sun, G.; Luo, L.; Cao, H.; Yu, H.; Vasilakos, A.V. Latency performance modeling and analysis for hyperledger fabric blockchain network. Inf. Process. Manag. 2021, 58, 102436. [Google Scholar]
- Toyoda, K.; Machi, K.; Ohtake, Y.; Zhang, A.N. Function-level bottleneck analysis of private proof-of-authority ethereum blockchain. IEEE Access 2020, 8, 141611–141621. [Google Scholar]
- Schäffer, M.; Di Angelo, M.; Salzer, G. Performance and scalability of private Ethereum blockchains. In Proceedings of the Business Process Management: Blockchain and Central and Eastern Europe Forum: BPM 2019 Blockchain and CEE Forum, Vienna, Austria, 1–6 September 2019; Proceedings 17. Springer: Cham, Switzerland, 2019; pp. 103–118. [Google Scholar]
- Hyperledger. Hyperledger Caliper. 2017. Available online: https://github.com/hyperledger/caliper (accessed on 20 March 2018).
- Mazzoni, M.; Corradi, A.; Di Nicola, V. Performance evaluation of permissioned blockchains for financial applications: The ConsenSys Quorum case study. Blockchain Res. Appl. 2022, 3, 100026. [Google Scholar]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Ampel, B.; Patton, M.; Chen, H. Performance modeling of hyperledger sawtooth blockchain. In Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), Shenzhen, China, 1–3 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 59–61. [Google Scholar]
- Alsahan, L.; Lasla, N.; Abdallah, M. Local bitcoin network simulator for performance evaluation using lightweight virtualization. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qata,, 2–5 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 355–360. [Google Scholar]
- Rubin, J. Btcspark: Scalable analysis of the bitcoin blockchain using spark. Dec 2015, 16, 1–14. [Google Scholar]
- Saingre, D.; Ledoux, T.; Menaud, J.M. BCTMark: A framework for benchmarking blockchain technologies. In Proceedings of the 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA), Antalya, Turkey, 2–5 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Zhang, J.; Gao, J.; Wang, K.; Wu, Z.; Lan, Y.; Guan, Z.; Chen, Z. TBFT: Understandable and efficient Byzantine fault tolerance using trusted execution environment. arXiv 2021, arXiv:2102.01970. [Google Scholar]
- Yuan, C.; Malone, B. Learning optimal Bayesian networks: A shortest path perspective. J. Artif. Intell. Res. 2013, 48, 23–65. [Google Scholar] [CrossRef]
Transactions | Tps Peak (tx/s) | Block Confirmation Latency Peak (ms) | Average Block Confirmation Latency (ms) | Time (s) | |
---|---|---|---|---|---|
1 k | open | 798 | 44 | 39 (+14.7%) | 2 (+0) |
close | 600 | 36 | 34 | 2 | |
2 k | open | 1500 | 42 | 39 (+14.7%) | 2 (+0) |
close | 1300 | 36 | 34 | 2 | |
5 k | open | 2182 | 44 | 39 (+18.2%) | 4 (+33.3%) |
close | 2000 | 35 | 33 | 3 | |
10 k | open | 2100 | 44 | 37 (+12.1%) | 7 (+16.7%) |
close | 2100 | 42 | 33 | 6 | |
20 k | open | 2100 | 51 | 39 (+11.4%) | 13 (+8.3%) |
close | 2000 | 39 | 35 | 12 | |
50 k | open | 2000 | 52 | 40 (+11.1%) | 31 (+3.3%) |
close | 2000 | 38 | 36 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Zhu, M.; Lu, D.; Zhu, C.; Zhao, J.; Sun, Y.; Li, L.; Zhu, H. Blockchain Bottleneck Analysis Based on Performance Metrics Causality. Electronics 2024, 13, 4236. https://doi.org/10.3390/electronics13214236
Song W, Zhu M, Lu D, Zhu C, Zhao J, Sun Y, Li L, Zhu H. Blockchain Bottleneck Analysis Based on Performance Metrics Causality. Electronics. 2024; 13(21):4236. https://doi.org/10.3390/electronics13214236
Chicago/Turabian StyleSong, Weihu, Mengxiao Zhu, Dong Lu, Chen Zhu, Jiejie Zhao, Yi Sun, Lei Li, and Haogang Zhu. 2024. "Blockchain Bottleneck Analysis Based on Performance Metrics Causality" Electronics 13, no. 21: 4236. https://doi.org/10.3390/electronics13214236
APA StyleSong, W., Zhu, M., Lu, D., Zhu, C., Zhao, J., Sun, Y., Li, L., & Zhu, H. (2024). Blockchain Bottleneck Analysis Based on Performance Metrics Causality. Electronics, 13(21), 4236. https://doi.org/10.3390/electronics13214236