Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution
Abstract
:1. Introduction
- A novel video super-resolution framework with Position-Guided Multi-Head Alignment (PGMH-A) is proposed, which explicitly aligns reference frame features to different heads/positions of an HR frame. PGMH-A can be trained both end-to-end and individually utilizing the ground-truth HR frames.
- A Position-Guided Multi-Head Temporal–Spatial Fusion (PGMH-F) is developed to fuse the multi-head temporal features, and then the fused multi-head temporal features are further aggregated among the heads to construct a spatial feature volume in order to facilitate the extraction of the spatial correlation among different spatial heads.
2. Related Work
2.1. Single-Image Super-Resolution
2.2. Video Super-Resolution
3. Proposed Method
3.1. Overview
3.2. Position-Guided Multi-Head Alignment
3.3. Position-Guided Multi-Head Fusion
3.4. Loss Functions
4. Experiments
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. State-of-the-Art VSR Methods Comparison
4.4. Ablation Studies
5. Conclusions
6. Limitation and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PGMH-A | Position-Guided Multi-Head Alignment |
PGMH-F | Position-Guided Multi-Head Fusion |
PGMH-AF | Position-Guided Multi-Head Alignment and Fusion |
References
- Chan, K.C.K.; Wang, X.; Yu, K.; Dong, C.; Loy, C.C. BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 4945–4954. [Google Scholar]
- Zhang, Z.; Peng, B.; Lei, J.; Shen, H.; Huang, Q. Recurrent Interaction Network for Stereoscopic Image Super-Resolution. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 2048–2060. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-ProjectiNetworks for Single Image Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4323–4337. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, J.; Peng, B.; Zhu, J.; Huang, Q. Self-Supervised Pretraining for Stereoscopic Image Super-Resolution with Parallax-Aware Masking. IEEE Trans. Broadcast. 2024, 70, 482–491. [Google Scholar] [CrossRef]
- Jo, Y.; Oh, S.W.; Kang, J.; Kim, S.J. Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3224–3232. [Google Scholar]
- Zhu, Q.; Chen, F.; Liu, Y.; Zhu, S.; Zeng, B. Deep Compressed Video Super-Resolution with Guidance of Coding Priors. IEEE Trans. Broadcast. 2024, 70, 505–515. [Google Scholar] [CrossRef]
- Isobe, T.; Li, S.; Jia, X.; Yuan, S.; Slabaugh, G.G.; Xu, C.; Li, Y.; Wang, S.; Tian, Q. Video Super-Resolution with Temporal Group Attention. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8005–8014. [Google Scholar]
- Agrahari Baniya, A.; Lee, T.K.; Eklund, P.W.; Aryal, S. Omnidirectional Video Super-Resolution Using Deep Learning. IEEE Trans. Multimed. 2024, 26, 540–554. [Google Scholar] [CrossRef]
- Wang, X.; Chan, K.C.K.; Yu, K.; Dong, C.; Loy, C.C. EDVR: Video Restoration with Enhanced Deformable Convolutional Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1954–1963. [Google Scholar]
- Feng, Z.; Zhang, W.; Liang, S.; Yu, Q. Deep Video Super-Resolution Using Hybrid Imaging System. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4855–4867. [Google Scholar] [CrossRef]
- Lei, J.; Li, X.; Peng, B.; Fang, L.; Ling, N.; Huang, Q. Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2686–2697. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, X.; Lei, J.; Zhang, Z.; Ling, N.; Huang, Q. LVE-S2D: Low-Light Video Enhancement from Static to Dynamic. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 8342–8352. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Cong, R.; Fu, H.; Han, P. Hierarchical Features Driven Residual Learning for Depth Map Super-Resolution. IEEE Trans. Image Process. 2019, 28, 2545–2557. [Google Scholar] [CrossRef]
- Chen, L.; Ye, M.; Ji, L.; Li, S.; Guo, H. Multi-Reference-Based Cross-Scale Feature Fusion for Compressed Video Super Resolution. IEEE Trans. Broadcast. 2024, 70, 895–908. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, Z.; Fan, X.; Yang, B.; Li, X.; Chen, Y.; Huang, Q. Deep Stereoscopic Image Super-Resolution via Interaction Module. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3051–3061. [Google Scholar] [CrossRef]
- Chen, P.; Yang, W.; Wang, M.; Sun, L.; Hu, K.; Wang, S. Compressed Domain Deep Video Super-Resolution. IEEE Trans. Image Process. 2021, 30, 7156–7169. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y.R. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the ECCV, 15th European Conference, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhao, T.; Lin, Y.; Xu, Y.; Chen, W.; Wang, Z. Learning-Based Quality Assessment for Image Super-Resolution. IEEE Trans. Multimed. 2022, 24, 3570–3581. [Google Scholar] [CrossRef]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning Texture Transformer Network for Image Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5790–5799. [Google Scholar]
- Zhang, H.; Xiao, J.; Jin, Z. Multi-Scale Image Super-Resolution Via a Single Extendable Deep Network. IEEE J. Sel. Top. Signal Process. 2021, 15, 253–263. [Google Scholar] [CrossRef]
- He, Z.; Jin, Z.; Zhao, Y. SRDRL: A Blind Super-Resolution Framework With Degradation Reconstruction Loss. IEEE Trans. Multimed. 2022, 24, 2877–2889. [Google Scholar] [CrossRef]
- Li, F.; Wu, Y.; Bai, H.; Lin, W.; Cong, R.; Zhang, C.; Zhao, Y. Learning Detail-Structure Alternative Optimization for Blind Super-Resolution. IEEE Trans. Multimed. 2022, 25, 2825–2838. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, X.; Wu, H.; Wang, Y.; Zhang, Y.; Wang, Y.F. LAR-SR: A Local Autoregressive Model for Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1909–1918. [Google Scholar]
- Caballero, J.; Ledig, C.; Aitken, A.P.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2848–2857. [Google Scholar]
- Liu, D.; Wang, Z.; Fan, Y.; Liu, X.; Wang, Z.; Chang, S.; Huang, T.S. Robust Video Super-Resolution with Learned Temporal Dynamics. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2526–2534. [Google Scholar]
- Tao, X.; Gao, H.; Liao, R.; Wang, J.; Jia, J. Detail-Revealing Deep Video Super-Resolution. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4482–4490. [Google Scholar]
- Kim, T.H.; Sajjadi, M.S.M.; Hirsch, M.; Schölkopf, B. Spatio-Temporal Transformer Network for Video Restoration. In Proceedings of the ECCV, 15th European Conference, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Xue, T.; Chen, B.; Wu, J.; Wei, D.; Freeman, W.T. Video Enhancement with Task-Oriented Flow. Int. J. Comput. Vis. 2018, 127, 1106–1125. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Fu, Y.R.; Xu, C. TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3357–3366. [Google Scholar]
- Xu, G.; Xu, J.; Li, Z.; Wang, L.; Sun, X.; Cheng, M.M. Temporal Modulation Network for Controllable Space-Time Video Super-Resolution. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6384–6393. [Google Scholar]
- Chiche, B.N.; Woiselle, A.; Frontera-Pons, J.; Starck, J.L. Stable Long-Term Recurrent Video Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 837–846. [Google Scholar]
- Isobe, T.; Jia, X.; Tao, X.; Li, C.; Li, R.; Shi, Y.; Mu, J.; Lu, H.; Tai, Y.W. Look Back and Forth: Video Super-Resolution with Explicit Temporal Difference Modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17411–17420. [Google Scholar]
- Chan, K.C.; Zhou, S.; Xu, X.; Loy, C.C. BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5972–5981. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Recurrent Back-Projection Network for Video Super-Resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–17 June 2019; pp. 3892–3901. [Google Scholar]
- Xiang, X.; Tian, Y.; Zhang, Y.; Fu, Y.R.; Allebach, J.P.; Xu, C. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3367–3376. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y.R. Residual Dense Network for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; Shi, W. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Li, Z.; Li, G.; Li, T.H.; Liu, S.; Gao, W. Information-Growth Attention Network for Image Super-Resolution. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021. [Google Scholar]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y.R. LatticeNet: Towards Lightweight Image Super-Resolution with Lattice Block. In Proceedings of the ECCV, 16th European Conference, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Lu, Z.; Liu, H.; Li, J.; Zhang, L. Efficient Transformer for Single Image Super-Resolution. arXiv 2021, arXiv:2108.11084v3. [Google Scholar]
- Liang, J.; Zeng, H.; Zhang, L. Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5657–5666. [Google Scholar]
- Sajjadi, M.S.M.; Vemulapalli, R.; Brown, M.A. Frame-Recurrent Video Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6626–6634. [Google Scholar]
- Li, W.; Tao, X.; Guo, T.; Qi, L.; Lu, J.; Jia, J. MuCAN: Multi-correspondence Aggregation Network for Video Super-Resolution. In Proceedings of the Computer Vision—ECCV, 16th European Conference, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 335–351. [Google Scholar]
- Luo, J.; Huang, S.; Yuan, Y. Video Super-Resolution using Multi-scale Pyramid 3D Convolutional Networks. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- Xiao, Z.; Xiong, Z.; Fu, X.; Liu, D.; Zha, Z. Space-Time Video Super-Resolution Using Temporal Profiles. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- Xu, Y.; Gao, L.; Tian, K.; Zhou, S.; Sun, H. Non-Local ConvLSTM for Video Compression Artifact Reduction. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7042–7051. [Google Scholar]
- Deng, J.; Wang, L.; Pu, S.; Zhuo, C. Spatio-Temporal Deformable Convolution for Compressed Video Quality Enhancement. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Timofte, R.; Agustsson, E.; Gool, L.V.; Yang, M.H.; Zhang, L.; Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M.; et al. NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1110–1121. [Google Scholar]
- Liu, C.; Yang, H.; Fu, J.; Qian, X. Learning Trajectory-Aware Transformer for Video Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Li, S.; Li, W.; Cook, C.; Zhu, C.; Gao, Y. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5457–5466. [Google Scholar]
- Yu, J.; Liu, J.; Bo, L.; Mei, T. Memory-Augmented Non-Local Attention for Video Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17834–17843. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Red Hook, NY, USA; 2017; pp. 6000–6010. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Liu, C.; Sun, D. On Bayesian Adaptive Video Super Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Wang, Z.; Jiang, K.; Jiang, J.; Ma, J. Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3106–3115. [Google Scholar]
Method | Frames | Calendar | City | Foliage | Walk | Average |
---|---|---|---|---|---|---|
Bicubic | 1 | 20.39/0.572 | 25.16/0.602 | 23.47/0.566 | 26.10/0.797 | 23.78/0.634 |
RCAN [19] | 1 | 22.33/0.725 | 26.10/0.696 | 24.74/0.664 | 28.65/0.871 | 25.46/0.739 |
ToFlow [30] | 7 | 22.47/0.731 | 26.78/0.740 | 25.27/0.709 | 29.05/0.879 | 25.89/0.765 |
DUF [6] | 7 | 24.04/0.811 | 28.27/0.831 | 26.41/0.770 | 30.60/0.914 | 27.33/0.831 |
EDVR [10] | 7 | 24.05/0.814 | 28.00/0.812 | 26.34/0.763 | 31.02/0.915 | 27.35/0.826 |
EDVR * [10] | 7 | 24.56/0.833 | 28.49/0.843 | 26.48/0.775 | 30.91/0.918 | 27.61/0.842 |
RBPN [36] | 7 | 24.02/0.808 | 27.83/0.804 | 26.21/0.757 | 30.62/0.911 | 27.17/0.820 |
PFNL [61] | 7 | 24.37/0.824 | 28.09/0.838 | 26.51/0.776 | 30.65/0.913 | 27.40/0.838 |
TGA [8] | 7 | 24.47/0.828 | 28.37/0.841 | 26.59/0.779 | 30.96/0.918 | 27.59/0.841 |
Ours | 7 | 24.64/0.837 | 28.77/0.853 | 26.66/0.784 | 31.09/0.921 | 27.79/0.848 |
Method | Frames | PSNR/SSIM |
---|---|---|
Bicubic | 1 | 31.32/0.8684 |
ToFlow [30] | 7 | 34.83/0.9220 |
DUF [6] | 7 | 36.37/0.9387 |
EDVR [10] | 7 | 37.61/0.9489 |
EDVR * [10] | 7 | 37.41/0.9488 |
RBPN [36] | 7 | 37.20/0.9458 |
TGA [8] | 7 | 37.61/0.9489 |
Ours | 7 | 37.75/0.9517 |
Method | HFER | PGMH-A | PGMH-F | PSNR/SSIM |
---|---|---|---|---|
Baseline | 27.42/0.8366 | |||
Model 1 | √ | 27.64/0.8446 | ||
Model 2 | √ | √ | 27.71/0.8469 | |
Full | √ | √ | √ | 27.79/0.8486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Cai, X.; Li, S.; Chai, J.; Li, C. Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution. Electronics 2024, 13, 4372. https://doi.org/10.3390/electronics13224372
Gao Y, Cai X, Li S, Chai J, Li C. Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution. Electronics. 2024; 13(22):4372. https://doi.org/10.3390/electronics13224372
Chicago/Turabian StyleGao, Yanbo, Xun Cai, Shuai Li, Jiajing Chai, and Chuankun Li. 2024. "Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution" Electronics 13, no. 22: 4372. https://doi.org/10.3390/electronics13224372
APA StyleGao, Y., Cai, X., Li, S., Chai, J., & Li, C. (2024). Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution. Electronics, 13(22), 4372. https://doi.org/10.3390/electronics13224372