Enhancing YOLOv8’s Performance in Complex Traffic Scenarios: Optimization Design for Handling Long-Distance Dependencies and Complex Feature Relationships
Abstract
:1. Introduction
2. Related Work
3. Optimization of YOLOv8’s Multi-Scale Feature Integration and Complex Dependency Handling Methods
3.1. Reconstruction of the Backbone Network
3.2. Incorporation of EMA Attention Mechanism
3.3. Two Modules Address the Issues
4. Ablation Study
4.1. Dataset and Experimental Framework
4.2. Evaluation and Analysis of Experimental Results
5. Model Performance Analysis
5.1. Model Performance Evaluation Using 5-Fold Cross-Validation
5.2. Visual Analysis of Detection Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Djenouri, Y.; Belhadi, A.; Lin, J.C.-W.; Djenouri, D.; Cano, A. A survey on urban traffic anomalies detection algorithms. IEEE Access 2019, 7, 12192–12205. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, J.; Duan, C.; Guan, X.; Lu, P.; Yang, K. A review of vehicle detection techniques for intelligent vehicles. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 3811–3831. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Bao, H.; Ma, Y. Vehicle detection: A review. J. Phys. Conf. Ser. 2020, 1634, 012107. [Google Scholar] [CrossRef]
- Ghahremannezhad, H.; Shi, H.; Liu, C. Object detection in traffic videos: A survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6780–6799. [Google Scholar] [CrossRef]
- Abbas, A.F.; Sheikh, U.U.; Al-Dhief, F.T.; Mohd, M.N.H. A comprehensive review of vehicle detection using computer vision. TELKOMNIKA (Telecommun. Comput. Electron. Control 2021, 19, 838–850. [Google Scholar] [CrossRef]
- Jain, N.K.; Saini, R.K.; Mittal, P. A review on traffic monitoring system techniques. In Soft Computing: Theories and Applications, Proceedings of the SoCTA 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 569–577. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems; Springer: Berlin, Gremany, 2015; Volume 28, pp. 91–99. [Google Scholar]
- Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Kantor, C.; Rauby, B.; Boussioux, L.; Jehanno, E.; Talbot, H. Over-CAM: Gradient-Based Localization and Spatial Attention for Confidence Measure in Fine-Grained Recognition using Deep Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021. [Google Scholar]
- Liu, Q.; Ye, H.; Wang, S.; Xu, Z. YOLOv8-CB: Dense Pedestrian Detection Algorithm Based on In-Vehicle Camera. Electronics 2024, 13, 236. [Google Scholar] [CrossRef]
- Dai, Y.; Kim, D.; Lee, K. An Advanced Approach to Object Detection and Tracking in Robotics and Autonomous Vehicles Using YOLOv8 and LiDAR Data Fusion. Electronics 2024, 13, 2250. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Li, A.; Sun, S.; Zhang, Z.; Feng, M.; Wu, C.; Li, W. A Multi-Scale Traffic Object Detection Algorithm for Road Scenes Based on Improved YOLOv5. Electronics 2023, 12, 878. [Google Scholar] [CrossRef]
- Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor. Electronics 2023, 12, 2323. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Dai, X.; Gao, J. Focal Modulation Networks. arXiv 2022, arXiv:2203.11926. [Google Scholar]
- Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (GELUs). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: New York City, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; IEEE: New York City, NY, USA, 2021; pp. 13713–13722. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York City, NY, USA, 2018; pp. 7794–7803. [Google Scholar]
- Lyu, S.; Chang, M.-C.; Du, D.; Wen, L.; Qi, H.; Li, Y.; Wei, Y.; Ke, L.; Hu, T.; Del Coco, M. UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; IEEE: New York City, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametr. Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; IEEE: New York City, NY, USA, 2016; pp. 78–83. [Google Scholar]
- Detector, A.-F.O. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1922–1933. [Google Scholar]
- Fei, Z.; Guo, D.; Wang, Y.; Wang, Q.; Qin, Y.; Yang, Z.; He, H. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance. J. Comput. Eng. Appl. 2024, 60, 110–120. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Pu, Y.; Liang, W.; Hao, Y.; Yuan, Y.; Yang, Y.; Zhang, C.; Hu, H.; Huang, G. Rank-DETR for high quality object detection. arXiv 2023, arXiv:2310.08854. [Google Scholar]
- Boukerche, A.; Hou, Z. Object detection using deep learning methods in traffic scenarios. ACM Comput. Surv. 2021, 54, 1–35. [Google Scholar] [CrossRef]
- Razi, A.; Chen, X.; Li, H.; Wang, H.; Russo, B.; Chen, Y.; Yu, H. Deep learning serves traffic safety analysis: A forward-looking review. IET Intell. Transp. Syst. 2023, 17, 22–71. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Chang, F.; Wang, Y. Machine vision based traffic sign detection methods: Review, analyses and perspectives. IEEE Access 2019, 7, 86578–86596. [Google Scholar] [CrossRef]
Replace Sppf | Backbone+EMA | Head+EMA | Precision | Recall | Map50 |
---|---|---|---|---|---|
no | no | no | 0.61 | 0.528 | 0.576 |
yes | no | no | 0.627 | 0.523 | 0.577 |
yes | no | yes | 0.594 | 0.529 | 0.559 |
yes | yes | yes | 0.616 | 0.551 | 0.57 |
yes | yes | no | 0.681 | 0.557 | 0.604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Meng, Q.; Li, X.; Wang, Z.; Liu, X.; Kong, S. Enhancing YOLOv8’s Performance in Complex Traffic Scenarios: Optimization Design for Handling Long-Distance Dependencies and Complex Feature Relationships. Electronics 2024, 13, 4411. https://doi.org/10.3390/electronics13224411
Li B, Meng Q, Li X, Wang Z, Liu X, Kong S. Enhancing YOLOv8’s Performance in Complex Traffic Scenarios: Optimization Design for Handling Long-Distance Dependencies and Complex Feature Relationships. Electronics. 2024; 13(22):4411. https://doi.org/10.3390/electronics13224411
Chicago/Turabian StyleLi, Bingyu, Qiao Meng, Xin Li, Zhijie Wang, Xin Liu, and Siyuan Kong. 2024. "Enhancing YOLOv8’s Performance in Complex Traffic Scenarios: Optimization Design for Handling Long-Distance Dependencies and Complex Feature Relationships" Electronics 13, no. 22: 4411. https://doi.org/10.3390/electronics13224411
APA StyleLi, B., Meng, Q., Li, X., Wang, Z., Liu, X., & Kong, S. (2024). Enhancing YOLOv8’s Performance in Complex Traffic Scenarios: Optimization Design for Handling Long-Distance Dependencies and Complex Feature Relationships. Electronics, 13(22), 4411. https://doi.org/10.3390/electronics13224411