Modeling Thermal Impedance of IGBT Devices Based on Fractional Calculus Techniques
Abstract
:1. Introduction
2. Modeling and Parameter Extraction of the Foster Thermal Network Model
3. Modeling and Parameter Identification of Fractional-Order Equivalent Thermal Impedance Model
3.1. Modeling Principle and Framework
3.2. Parameter Identification Based on the MOPSO Algorithm
- Step 1:
- Initialize the population and external archive.
- Step 2:
- Calculate the fitness of particles (objective function).
- Step 3:
- Calculate local optimal particles: for local optimal particles, when multiple non-dominated particles are present, one is randomly selected as the local optimum.
- Step 4:
- Select the globally optimal particle: For globally optimal particles, the MOPSO algorithm uses a grid method to determine multiple non-dominated particle global leaders that guide the flight direction of the particle swarm. The grid method divides the range of values of the objective function into grids and determines the leader based on the sparseness of the particles in a single grid; the more particles there are in the grid, the lower the probability of the particles being selected, and therefore, the probability of the particles being selected is higher in a sparser grid.
- Step 5:
- Update the position and velocity of the particle and update the external archive.
- Step 6:
- Determine whether the iteration stop condition is met or not.
- Step 7:
- Output the model parameters when the iteration stop condition is fulfilled.
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Chen, W.; Wu, Y.; Liu, Y.; Wang, T.; Wang, L.; Zhang, J.; Liu, J.; Gan, Y. In Situ Diagnosis for IGBT Chip Failure in Multichip IGBT Modules Based on a Newly Defined Characteristic Parameter Low-Sensitive to Operation Conditions. IEEE Trans. Power Electron. 2023, 38, 7711–7722. [Google Scholar] [CrossRef]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B. Survey on Reliability of Power Electronic Systems. IEEE Trans. Power Electron. 2013, 28, 591–604. [Google Scholar] [CrossRef]
- Mandeya, R.; Chen, C.; Pickert, V.; Naayagi, R.T.; Ji, B. Gate–Emitter Pre-threshold Voltage as a Health-Sensitive Parameter for IGBT Chip Failure Monitoring in High-Voltage Multichip IGBT Power Modules. IEEE Trans. Power Electron. 2019, 34, 9158–9169. [Google Scholar] [CrossRef]
- Deng, G.; Wang, J.; Wu, Y.; Tan, C.; Liang, S. 3-D Segmented Gate Concept: A New IGBT Solution for Reduced Loss and Improved Safe-Operating Area. IEEE Trans. Electron Devices 2023, 70, 3172–3178. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Liu, F.; Liu, Q.; Zou, R. An RLL Current Sharing Snubber for Multiple Parallel IGBTs in High Power Applications. IEEE Trans. Power Electron. 2022, 37, 7555–7560. [Google Scholar] [CrossRef]
- Shahsavarian, T.; Zhang, D.; McGinnis, P.; Walker, S.; Zhang, Z.; Cao, Y. Altitude Readiness of High-Voltage IGBTs Subjected to the Partial Discharge at Harsh Environmental Conditions for Hybrid Electric Aircraft Propulsion. IEEE Trans. Power Electron. 2022, 37, 3733–3736. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Zhang, Y.; Fan, J.; Li, X.; Qi, L.; Cui, X. Impacts of the Pressure Distribution on Dynamic Avalanche in Single Press-Pack IGBT Chip. IEEE Trans. Power Electron. 2024, 39, 8187–8201. [Google Scholar] [CrossRef]
- Tu, C.; Xu, H.; Xiao, B.; Lu, J.; Guo, Q.; Long, L. Research on the Influence of Bond Wire Lift-Off Position on the Electro-Thermal Characteristics of IGBT. IEEE Trans. Electron Devices 2022, 69, 1271–1278. [Google Scholar] [CrossRef]
- Xie, D.; Lin, C.; Deng, Q.; Lin, H.; Cai, C.; Basler, T.; Ge, X. Simple Vector Calculation and Constraint-Based Fault-Tolerant Control for a Single-Phase CHBMC. IEEE Trans. Power Electron. 2024, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Chen, Z.; Xu, S.; Liu, K. Real-Time Fault Diagnosis of Pulse Rectifier in Traction System Based on Structural Model. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2130–2143. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Zhu, J.; Yang, Y.; Chen, K.; Wang, T.; Xia, Z. A Novel Trench IGBT with N-P-N Polysilicon Gate Structure for Low EMI Noise and High Robustness. IEEE Trans. Electron Devices 2024, 71, 2508–2516. [Google Scholar] [CrossRef]
- Deng, X.; Cheng, Z.; Chen, Z.; Wu, H.; Bai, S.; Li, X.; Li, X.; Chen, W.; Zhang, B. A Hybrid-Channel Injection Enhanced Modulation 4H-SiC IGBT Transistors with Improved Performance. IEEE Trans. Electron Devices 2022, 69, 4421–4426. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, J.; Zhang, L.; Wei, J.; Li, S.; Liu, S.; Zhang, S.; Zhu, J.; Sun, W. Silicon-on-Insulator Lateral Insulated Gate Bipolar Transistor: Current Technologies and Prospects. IEEE Trans. Electron Devices 2024, 71, 381–392. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, J.; Shen, Z.; Zhang, A.; Chen, W. 16kV 4H-SiC Reverse-Conducting IGBT with a Collector-Side Injection-Enhanced Structure for Low Reverse-Conducting Voltage. IEEE Electron Device Lett. 2024, 45, 1064–1067. [Google Scholar] [CrossRef]
- Guo, C.; Cui, S.; Tsai, W.; Liu, Y.; Ding, J.; Li, J.; Chen, Z.; Li, Y.; Pan, S.; Feng, S. Measuring Double-Sided Thermal Resistance of Press-Pack IGBT Modules Based on Ratio of Double-Sided Heat Dissipation. IEEE Trans. Electron Devices 2023, 70, 1776–1781. [Google Scholar] [CrossRef]
- Xu, G.; Shao, L.; Feng, W.; Zhu, W.; Pan, Z.; Li, C.; Zhang, Y.; Xia, L. A Novel IGBT Junction Temperature Detection Based on High-Frequency Model of Inductor Element. IEEE Trans. Instrum. Meas. 2023, 72, 1500810. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P. A Novel Converter-Level IGBT Junction Temperature Estimation Method Based on the Bus Voltage Ringing. IEEE Trans. Power Electron. 2022, 37, 4553–4563. [Google Scholar] [CrossRef]
- Jones-Jackson, S.; Rodriguez, R.; Emadi, A. Jet Impingement Cooling in Power Electronics for Electrified Automotive Transportation: Current Status and Future Trends. IEEE Trans. Power Electron. 2021, 36, 10420–10435. [Google Scholar] [CrossRef]
- Bahman, A.S.; Ma, K.; Blaabjerg, F. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules. IEEE Trans. Power Electron. 2018, 33, 2518–2530. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, Y.; An, T.; Zhou, R. An Improved Thermal Network Model of Press-Pack IGBT Modules Considering Contact Surface Damage. IEEE Trans. Device Mater. Reliab. 2023, 23, 444–452. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Luo, D.; Chen, C.; Ji, B.; Li, G. Multitimescale Thermal Network Model of Power Devices Based on POD Algorithm. IEEE Trans. Power Electron. 2024, 39, 3906–3924. [Google Scholar] [CrossRef]
- Guo, W.; Ma, M.; Wang, H.; Wang, H.; Song, Q.; Chen, W. A Partition Decoupling Algorithm for Compact Thermal Model in Multichip IGBT Modules. IEEE Trans. Power Electron. 2023, 38, 66–72. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, W. A Physics-Based Improved Cauer-Type Thermal Equivalent Circuit for IGBT Modules. IEEE Trans. Power Electron. 2016, 31, 6781–6786. [Google Scholar] [CrossRef]
- Du, M.; Guo, Q.; Wang, H.; Ouyang, Z.; Wei, K. An Improved Cauer Model of IGBT Module: Inclusive Void Fraction in Solder Layer. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1401–1410. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Y.; Zhang, T.; Jiang, Y. An Adaptive Electrothermal Model for Estimating the Junction Temperature of Power Device. IEEE Trans. Electron Devices 2021, 68, 3475–3482. [Google Scholar] [CrossRef]
- Eleffendi, M.A.; Johnson, C.M. Application of Kalman Filter to Estimate Junction Temperature in IGBT Power Modules. IEEE Trans. Power Electron. 2016, 31, 1576–1587. [Google Scholar] [CrossRef]
- Li, R.-R.; Zhang, Y.-H.; Wang, Y.-F.; Wang, L.-B. Convective Heat-Transfer Characteristics of a Channel with One Surface Having Mini-Grooves in the Flow Direction and a Plain Surface Located at a Mini-Distance. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 65–74. [Google Scholar] [CrossRef]
- Han, J.; Liu, K.; Gao, Y.; Yan, P. Transient Thermal Design for Inverter Unit of High-Voltage Capacitor Charging Power Supply. IEEE Trans. Plasma Sci. 2017, 45, 1651–1655. [Google Scholar] [CrossRef]
- Heng, K.; Yang, X.; Wu, X.; Ye, J. A 3-D Thermal Network Model for Monitoring of IGBT Modules. IEEE Trans. Electron Devices 2023, 70, 653–661. [Google Scholar] [CrossRef]
- Yu, D.; Liao, X.; Wang, Y. Modeling and Analysis of Caputo–Fabrizio Definition-Based Fractional-Order Boost Converter with Inductive Loads. Fractal Fract. 2024, 8, 81. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Liu, D.-Y.; Boutat, D.; Zhang, X.; Shi, P. Nonasymptotic Fractional Derivative Estimation of the Pseudo-State for a Class of Fractional-Order Partial Unknown Nonlinear Systems. IEEE Trans. Cybern. 2023, 53, 7392–7405. [Google Scholar] [CrossRef] [PubMed]
- Almatroud, O.A.; Khennaoui, A.-A.; Ouannas, A.; Alshammari, S.; Albosaily, S. A New Fractional Discrete Memristive Map with Variable Order and Hidden Dynamics. Fractal Fract. 2024, 8, 322. [Google Scholar] [CrossRef]
- Baishemirov, Z.; Berdyshev, A.; Baigereyev, D.; Boranbek, K. Efficient Numerical Implementation of the Time-Fractional Stochastic Stokes–Darcy Model. Fractal Fract. 2024, 8, 476. [Google Scholar] [CrossRef]
- Barbero, G.; Evangelista, L.R.; Zola, R.S.; Lenzi, E.K.; Scarfone, A.M. A Brief Review of Fractional Calculus as a Tool for Applications in Physics: Adsorption Phenomena and Electrical Impedance in Complex Fluids. Fractal Fract. 2024, 8, 369. [Google Scholar] [CrossRef]
- Sarfraz, M.; Zhou, J.; Ali, F. An 8D Hyperchaotic System of Fractional-Order Systems Using the Memory Effect of Grünwald–Letnikov Derivatives. Fractal Fract. 2024, 8, 530. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- You, W.-B.; Ding, Y.-H. W-MOPSO in Adaptive Circuits for Blast Wave Measurements. IEEE Sens. J. 2021, 21, 9323–9332. [Google Scholar] [CrossRef]
- Ravelo, B.; Agnus, B.; Carras, S.; Davin, T. Cauer Ladder Inspired Kron–Branin Modeling of Thermal 1-D Diffusion. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 27–31. [Google Scholar] [CrossRef]
i | 1 | 2 | 3 | 4 |
---|---|---|---|---|
0.12257 | 0.12263 | 0.04616 | 0.05319 | |
2.27168 | 2.22447 | 115.99978 | 14.57902 |
Comparative Aspect | Cauer Thermal Network Model | Foster Thermal Network Model | Fractional-Order Equivalent Thermal Impedance Model |
---|---|---|---|
Modeling accuracy | High precision at higher orders | High precision at higher orders | Higher accuracy under the same complexity |
Complexity | The higher the order, the more complex the model | The higher the order, the more complex the model | Relatively simple |
Applicable conditions | Limited application | Widely applied | First proposed but not yet applied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Yang, Z.; Huang, Y.; Yang, W.; Liu, W.; Chen, X. Modeling Thermal Impedance of IGBT Devices Based on Fractional Calculus Techniques. Electronics 2024, 13, 4423. https://doi.org/10.3390/electronics13224423
Yang N, Yang Z, Huang Y, Yang W, Liu W, Chen X. Modeling Thermal Impedance of IGBT Devices Based on Fractional Calculus Techniques. Electronics. 2024; 13(22):4423. https://doi.org/10.3390/electronics13224423
Chicago/Turabian StyleYang, Nan, Zhikui Yang, Yaoling Huang, Wen Yang, Wei Liu, and Xi Chen. 2024. "Modeling Thermal Impedance of IGBT Devices Based on Fractional Calculus Techniques" Electronics 13, no. 22: 4423. https://doi.org/10.3390/electronics13224423
APA StyleYang, N., Yang, Z., Huang, Y., Yang, W., Liu, W., & Chen, X. (2024). Modeling Thermal Impedance of IGBT Devices Based on Fractional Calculus Techniques. Electronics, 13(22), 4423. https://doi.org/10.3390/electronics13224423