Robust Estimation of Lithium Battery State of Charge with Random Missing Current Measurement Data
Abstract
:1. Introduction
2. Battery Model and Parameter Identification
2.1. Battery Model
2.2. The Proposed MIDRLS Algorithm
Algorithm 1 The algorithm flow of the proposed MIDRLS |
. |
. |
End For |
2.3. Parameter Identification of the Battery Model
3. SOC Estimation Based on the Joint MIDRLS-UKF Algorithm
3.1. Equations of State and Measurement for the Battery Model
3.2. SOC Estimation Based on the UKF Algorithm
- (1)
- Initialize:
- (2)
- Obtain Sigma points at time :The weighting factors are
- (3)
- Calculate the forecasted values of the mean and covariance matrix:
- (4)
- Update the sigma sample points:
- (5)
- Calculate the estimated values of the output and the Kalman gain:
- (6)
- Update the state variables and error covariance matrix:
3.3. Implementation Flow of the MIDRLS-UKF Algorithm
4. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | state of charge |
UKF | unscented Kalman filter |
EKF | extended Kalman filter |
FFRLS | forgetting factor recursive least square |
MIDRLS | recursive least square with missing input data |
BMS | battery management system |
RMSE | root mean square error |
MAE | maximum absolute error |
Symbols | |
voltage of the ideal voltage source | |
battery equivalent internal resistance | |
polarization resistance | |
polarization capacitor | |
battery terminal voltage | |
load current | |
Bernoulli random variable | |
input data | |
input data with random missing values | |
probability that input data are not missing | |
constant times of imputation | |
output data | |
parameter vector to be identified | |
forgetting factor | |
objective function of the FFRLS algorithm | |
time step index | |
sampling time | |
maximum capacity of the battery | |
Coulombic efficiency | |
state vector | |
process noise | |
measurement noise | |
terminal voltage minus ideal voltage source voltage | |
measure vector | |
estimated value of the initial state | |
initial error covariance matrix | |
dimension of state variable | |
weighted value of the mean of the sampling points | |
weighted value of the error covariance matrices | |
estimated value of the state variable at moment | |
gain matrix |
References
- Liu, C.; Liu, W.; Wang, L.; Hu, G.; Ma, L.; Ren, B. A new method of modeling and state of charge estimation of the battery. J. Power Sources 2016, 320, 1–12. [Google Scholar] [CrossRef]
- Tong, Y.; Zheng, Z.; Fan, W.; Liu, Z. Improved unscented Kalman filter for state of charge estimation of lithium-ion battery with one-step randomly measurement loss and inaccurate noise covariance matrices. Digit. Signal Process. 2022, 131, 103780. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Singh, S.; More, V.; Batheri, R. Driving Electric Vehicles Into the Future With Battery Management Systems. IEEE Eng. Manag. Rev. 2022, 50, 157–161. [Google Scholar] [CrossRef]
- Charkhgard, M.; Farrokhi, M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Qin, P.; Zhao, L. A Novel Transfer Learning-Based Cell SOC Online Estimation Method for a Battery Pack in Complex Application Conditions. IEEE Trans. Ind. Electron. 2023, 71, 1606–1615. [Google Scholar] [CrossRef]
- Dubarry, M.; Svoboda, V.; Hwu, R.; Liaw, B.Y. Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge. J. Power Sources 2007, 174, 1121–1125. [Google Scholar] [CrossRef]
- Tian, J.; Chen, C.; Shen, W.; Sun, F.; Xiong, R. Deep learning framework for lithium-ion battery state of charge estimation: Recent advances and future perspectives. Energy Storage Mater. 2023, 61, 102883. [Google Scholar] [CrossRef]
- Chai, X.; Li, S.; Liang, F. A novel battery SOC estimation method based on random search optimized LSTM neural network. Energy 2024, 306, 132583. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Shi, Y.; Jiang, Q.; Zhou, C.; Zheng, Z. Deep Reinforcement Learning-Based Optimal PMU Placement Considering the Degree of Power System Observability. IEEE Trans. Ind. Inform. 2024, 20, 8949–8960. [Google Scholar] [CrossRef]
- Tang, A.; Huang, Y.; Liu, S.; Yu, Q.; Shen, W.; Xiong, R. A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models. Appl. Energy 2023, 348, 121578. [Google Scholar] [CrossRef]
- Buchicchio, E.; De Angelis, A.; Santoni, F.; Carbone, P.; Bianconi, F.; Smeraldi, F. Battery SOC estimation from EIS data based on machine learning and equivalent circuit model. Energy 2023, 283, 128461. [Google Scholar] [CrossRef]
- Yang, H.; Sun, X.; An, Y.; Zhang, X.; Wei, T.; Ma, Y. Online parameters identification and state of charge estimation for lithium-ion capacitor based on improved Cubature Kalman filter. J. Energy Storage 2019, 24, 100810. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhang, L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy 2019, 174, 33–44. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kok Soon, T.; Bin Idris, M.Y.I.; Mekhilef, S.; Adnan, S.B.R.S. Combined State of Charge and State of Energy Estimation of Lithium-Ion Battery Using Dual Forgetting Factor-Based Adaptive Extended Kalman Filter for Electric Vehicle Applications. IEEE Trans. Veh. Technol. 2021, 70, 1200–1215. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Gu, T. A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation. J. Energy Storage 2023, 62, 106831. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery. J. Energy Storage 2020, 32, 101980. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Putra, W.S.; Dewangga, B.R.; Cahyadi, A.; Wahyunggoro, O. Current estimation using Thevenin battery model. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE), Surakarta, Indonesia, 4–5 November 2015; pp. 5–9. [Google Scholar]
- Kwak, M.; Lkhagvasuren, B.; Park, J.; You, J.-H. Parameter Identification and SOC Estimation of a Battery Under the Hysteresis Effect. IEEE Trans. Ind. Electron. 2019, 67, 9758–9767. [Google Scholar] [CrossRef]
- Pop, V.; Bergveld, H.J.; het Veld, J.O.; Regtien, P.P.L.; Danilov, D.; Notten, P.H.L. Modeling battery behavior for accurate state-of-charge indication. J. Electrochem. Soc. 2006, 153, A2013. [Google Scholar] [CrossRef]
- Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [Google Scholar] [CrossRef]
- Leung, S.-H.; So, C.F. Gradient-based variable forgetting factor RLS algorithm in time-varying environments. IEEE Trans. Signal Process. 2005, 53, 3141–3150. [Google Scholar] [CrossRef]
- Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–120. [Google Scholar] [CrossRef]
- Hossain, M.; Haque, M.E.; Arif, M.T. Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis. J. Energy Storage 2022, 51, 104174. [Google Scholar] [CrossRef]
- Wang, K.; Feng, X.; Pang, J.; Duan, C.; Li, L. State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented kalman filter. Int. J. Electrochem. Sci. 2020, 15, 9499–9516. [Google Scholar]
- Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy 2016, 183, 513–525. [Google Scholar] [CrossRef]
Parameters of the MIDRLS Algorithm | Parameters of the UKF Algorithm |
---|---|
Algorithm | RMSE (%) | MAE (%) |
---|---|---|
MIDRLS-UKF | 0.43% | 0.81% |
FFRLS-UKF | 8.12% | 14.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zheng, Z.; Meng, J.; Wang, Q. Robust Estimation of Lithium Battery State of Charge with Random Missing Current Measurement Data. Electronics 2024, 13, 4436. https://doi.org/10.3390/electronics13224436
Li X, Zheng Z, Meng J, Wang Q. Robust Estimation of Lithium Battery State of Charge with Random Missing Current Measurement Data. Electronics. 2024; 13(22):4436. https://doi.org/10.3390/electronics13224436
Chicago/Turabian StyleLi, Xi, Zongsheng Zheng, Jinhao Meng, and Qinling Wang. 2024. "Robust Estimation of Lithium Battery State of Charge with Random Missing Current Measurement Data" Electronics 13, no. 22: 4436. https://doi.org/10.3390/electronics13224436
APA StyleLi, X., Zheng, Z., Meng, J., & Wang, Q. (2024). Robust Estimation of Lithium Battery State of Charge with Random Missing Current Measurement Data. Electronics, 13(22), 4436. https://doi.org/10.3390/electronics13224436