A Thermal Impedance Model for IGBT Modules Considering the Nonlinear Thermal Characteristics of Chips and Ceramic Materials
Abstract
:1. Introduction
2. Single-Chip Thermal Impedance Model
2.1. Equivalent Circuit Model of the IGBT Module
2.2. Solving the Heat Diffusion Angle of Each Layer in the IGBT Module
2.3. Temperature-Sensitive Properties of Materials
2.4. Solving Heat Flux Density Using Fourier Series Analysis Method
3. Thermal Resistance Model Considering Multi-Chip Thermal Coupling
3.1. Improved Calculation Method of Coupling Thermal Resistance
3.2. Program Implementation Steps for Calculating Multi-Chip Junction Temperature
4. Simulation Verification
5. Conclusions
- When the power loss was less than 200 W, compared with the FEM, the maximum errors in the thermal resistance of the ceramic layer, the thermal resistance of the chip layer, and the tangent of the heat diffusion angle of the ceramic layer obtained by the method proposed in this study were 6.73%, 1%, and 5.5%, respectively. However, compared with the FEM, the maximum errors in the thermal resistance of the ceramic layer, thermal resistance of the chip layer, and tangent of the heat diffusion angle of the ceramic layer obtained by the method without considering the TS of the material were 30%, 25.1%, and 17.34%, respectively. After considering the TS of the ceramic and chip materials, the accuracy of the thermal resistance of the ceramic and chip layers and the accuracy of the tangent value of the ceramic layer heat diffusion angle were greatly improved.
- When the power loss is less than 200 W, the error of the method without considering TS compared to the FEM considering TS increases, even exceeding 9% when the power loss is 200 W. When the power loss is less than 200 W, the maximum error of the method proposed in this study does not exceed 4%, which is more than 5% lower than that of the method that does not consider the TS. This indicates that the nonlinear thermal characteristics of the chip and ceramic materials can affect the heat diffusion angle and thermal resistance of the chip and ceramic layers, thereby affecting the junction temperature. Considering the TS of the materials can significantly improve the accuracy of the junction temperature.
- Compared to the FEM, the junction temperature obtained by the proposed method increased faster. Although there are some differences in the process of junction temperature rise, the final steady-state junction temperature obtained is almost the same. The rise in junction temperature becomes slower by increasing the thermal capacitance of each layer, indicating that thermal capacitance affects the speed of the junction temperature rise.
- Based on considering the TS mentioned above, considering the TS and TCEs between chips can reduce the error by 12.6%, and the error of the proposed method considering TS and TCEs is only 7.73%. This indicates that the TCEs between chips will greatly increase the junction temperature of the chips, and considering the TCEs can greatly improve the accuracy.
- Compared to the FEM, the solution time of the proposed method was reduced by 88.7%. In addition, the FEM has a complex modeling process, whereas the proposed method requires only the input of the size, material, and boundary parameters of the IGBT modules.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chai, X.; Ning, P.; Cao, H.; Zheng, D.; Li, H.; Huang, Y.; Kang, Y. Online Junction Temperature Measurement of Double-sided Cooling IGBT Power Module through On-state Voltage with High Current. Chin. J. Electr. Eng. 2022, 8, 104–112. [Google Scholar] [CrossRef]
- Li, C.; Sun, X.; Zha, M.; Yang, C.; Wang, W.; Su, J. IGBT Thermal Model-Based Predictive Energy Management Strategy for Plug-In Hybrid Electric Vehicles Using Game Theory. IEEE Trans. Transp. Electrif. 2023, 9, 3268–3281. [Google Scholar] [CrossRef]
- Shahsavarian, T.; Zhang, D.; McGinnis, P.; Walker, S.; Zhang, Z.; Cao, Y. Altitude Readiness of High-Voltage IGBTs Subjected to the Partial Discharge at Harsh Environmental Conditions for Hybrid Electric Aircraft Propulsion. IEEE Trans. Power Electron. 2022, 37, 3733–3736. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Liu, S.; Li, Y.; Liao, X.; Liu, Z. An Improved Thermal Network Model of the IGBT Module for Wind Power Converters Considering the Effects of Base-Plate Solder Fatigue. IEEE Trans. Device Mater. Reliab. 2016, 16, 570–575. [Google Scholar] [CrossRef]
- Zhang, J.; Du, X.; Qian, C.; Du, R.; Hu, X.; Tai, H.-M. Thermal Management of IGBT Module in the Wind Power Converter Based on the ROI. IEEE Trans. Ind. Electron. 2022, 69, 8513–8523. [Google Scholar] [CrossRef]
- Zwicker, R.M. Generation of Multiple Isolated Bias Rails for IGBT Inverters using Flyback/SEPIC/Cuk Combination. In PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management: Nuremberg, Germany, 2014; pp. 1–8. [Google Scholar]
- Xie, D.; Lin, C.; Deng, Q.; Lin, H.; Cai, C.; Basler, T. Simple Vector Calculation and Constraint-Based Fault-Tolerant Control for a Single-Phase CHBMC. IEEE Trans. Power Electron. 2024, 1–14. [Google Scholar] [CrossRef]
- Li, K.; Cheng, S.; Yu, T.; Wu, X.; Xiang, C.; Bilal, A. An On-Line Multiple Open-Circuit Fault Diagnostic Technique for Railway Vehicle Air-Conditioning Inverters. IEEE Trans. Veh. Technol. 2020, 69, 7026–7039. [Google Scholar] [CrossRef]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Hu, Z.; Du, M.; Wei, K. Online Calculation of the Increase in Thermal Resistance Caused by Solder Fatigue for IGBT Modules. IEEE Trans. Device Mater. Reliab. 2017, 17, 785–794. [Google Scholar] [CrossRef]
- Alavi, O.; Abdollah, M.; Viki, A.H. Assessment of thermal network models for estimating IGBT junction temperature of a buck converter. In Proceedings of the 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, 14–16 February 2017; pp. 102–107. [Google Scholar]
- Drofenik, U.; Kolar, J.W. Teaching thermal design of power electronic systems with web-based interactive educational software. In Proceedings of the Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC ‘03., Miami Beach, FL, USA, 9–13 February 2003; Volume 2, pp. 1029–1036. [Google Scholar]
- Xin, X.; Zhang, C.; Zhao, J. Electro-thermal based junction temperature estimation model and thermal performance analysis for IGBT module. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; pp. 1–6. [Google Scholar]
- Wang, Z.; Qiao, W. A Physics-Based Improved Cauer-Type Thermal Equivalent Circuit for IGBT Modules. IEEE Trans. Power Electron. 2016, 31, 6781–6786. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, M.; Guo, W.; Li, F.; Wang, H. An Improved Cauer Model of IGBT Module Considering Chip Solder Degradation. In Proceedings of the 2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Shanghai, China, 9–12 June 2023; pp. 726–731. [Google Scholar]
- Du, M.; Guo, Q.; Wang, H.; Ouyang, Z.; Wei, K. An Improved Cauer Model of IGBT Module: Inclusive Void Fraction in Solder Layer. IEEE Trans. Components, Packag. Manuf. Technol. 2020, 10, 1401–1410. [Google Scholar] [CrossRef]
- Zhang, J.; Du, X.; Sun, P.; Tai, H.-M. Thermal network parameters identifying during the cooling procedure of IGBT module. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 1616–1621. [Google Scholar]
- Yan, Q.; Li, A.; Wang, G.; Yin, J.; Dong, C.; Du, M. Two-Branch Coupling Cauer Model in IGBT Module Considering FWD Thermal Coupling Effect. IEEE Trans. Compon. Packag. Manuf. Technol. 2024, 14, 912–920. [Google Scholar] [CrossRef]
- Wu, Z.; Su, X.; Zhu, Y. IGBT junction and coolant temperature estimation by thermal model. Microelectron. Reliab. 2018, 87, 168–182. [Google Scholar]
- Meng, J.; Wen, X.; Zhong, Y.; Qiu, Z.; Li, Q. Studies on the Temperature Effect on Thermal Resistance of Power Modules. In Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 15–18 October 2013; pp. 1–5. [Google Scholar]
- Cui, H.; Hu, F.; Zhang, Y.; Zhou, K. Heat spreading path optimization of IGBT thermal network model. Microelectron. Reliab. 2019, 103, 113511. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, L.; Sun, P.; Zhou, T.; Li, Q. Effect of TIM Deterioration on Monitoring of IGBT Module Thermal Resistance and Its Compensation Strategy. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 789–797. [Google Scholar] [CrossRef]
- Yang, X.; Heng, K.; Dai, X.; Wu, X.; Liu, G. A Temperature-Dependent Cauer Model Simulation of IGBT Module With Analytical Thermal Impedance Characterization. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3055–3065. [Google Scholar] [CrossRef]
- Xu, M.; Ma, K.; Qi, Y.; Cai, X.; Li, X.; Wang, A.; Zheng, L. Frequency-Domain Thermal Coupling Model of Multi-Chip Power Module. IEEE Trans. Power Electron. 2023, 38, 6522–6532. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P. SPICE-Aided Nonlinear Electrothermal Modeling of an IGBT Module. Electronics 2023, 12, 4588. [Google Scholar] [CrossRef]
- Ma, M.; Guo, W.; Yan, X.; Yang, S.; Zhang, X.; Chen, W.; Cai, G. A Three-Dimensional Boundary-Dependent Compact Thermal Network Model for IGBT Modules in New Energy Vehicles. IEEE Trans. Ind. Electron. 2021, 68, 5248–5258. [Google Scholar] [CrossRef]
- Li, H.; Liao, X.; Zeng, Z.; Hu, Y.; Li, Y.; Liu, S.; Ran, L. Thermal Coupling Analysis in a Multichip Paralleled IGBT Module for a DFIG Wind Turbine Power Converter. IEEE Trans. Energy Convers. 2017, 32, 80–90. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Ai, Y.; Chen, S.; Bai, Y. Dynamic IGBT Three-Dimensional Thermal Network Model Considering Base Solder Degradation and Thermal Coupling Between IGBT Chips. IEEE Trans. Transp. Electrif. 2023, 9, 2994–3011. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Z.; Xu, Z.; Ge, X.; Yang, Y.; Zhang, Y.; Yao, B.; Xie, D. A Thermal Network Model for Multichip Power Modules Enabling to Characterize the Thermal Coupling Effects. IEEE Trans. Power Electron. 2024, 39, 6225–6245. [Google Scholar] [CrossRef]
- Xu, M.; Ma, K.O.G.; Cai, X.; Cao, G.; Zhang, Y. Lumped Thermal Coupling Model of Multichip Power Module Enabling Case Temperature as Reference Node. IEEE Trans. Power Electron. 2022, 37, 11502–11506. [Google Scholar] [CrossRef]
- Heng, K.; Yang, X.; Wu, X.; Ye, J. A 3-D Thermal Network Model for Monitoring of IGBT Modules. IEEE Trans. Electron Devices 2023, 70, 653–661. [Google Scholar] [CrossRef]
- Heng, K.; Yang, X.; Wu, X.; Ye, J.; Liu, G. A Temperature-Dependent Physical Thermal Network Model Including Thermal Boundary Conditions for SiC MOSFET Module. IEEE Trans. Electron Devices 2022, 69, 4444–4452. [Google Scholar] [CrossRef]
- Wu, R.; Wang, H.; Pedersen, K.B.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations. IEEE Trans. Ind. Appl. 2016, 52, 3306–3314. [Google Scholar] [CrossRef]
- Guo, W.; Ma, M.; Wang, H.; Xiang, N.; Wang, H.; Chen, Z.; Chen, W. Real-Time Average Junction Temperature Estimation for Multichip IGBT Modules With Low Computational Cost. IEEE Trans. Ind. Electron. 2023, 70, 4175–4185. [Google Scholar] [CrossRef]
- Zhan, C.; Zhu, L.; Wang, W.; Jiao, Q.; Zhang, Y.; Ji, S. A Large-Scale Identification Approach for Thermal Parameters of Multichips IGBT Modules Based on LLSO-SQP Algorithm. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2554–2564. [Google Scholar] [CrossRef]
- Xu, M.; Ma, K.; Zhong, Q.; Liserre, M. Frequency-Domain Thermal Modeling of Power Modules Based on Heat Flow Spectrum Analysis. IEEE Trans. Power Electron. 2023, 38, 2446–2455. [Google Scholar] [CrossRef]
- Yu, Y.; Du, X.; Zhou, J.; Ren, H.; Liu, Q.; Luo, Q. Condition Monitoring of Thermal Fatigue of IGBT Module Using Turning Point of Preheating Stage of Case Temperature. IEEE Trans. Power Electron. 2023, 38, 2866–2871. [Google Scholar] [CrossRef]
- Xiao, Q.; Tang, M.; Mao, J. Thermal Circuit Models of Microstrip Lines Based on Precise Heat Spreading Angles and Convection Boundary Conditions. IEEE Trans. Components, Packag. Manuf. Technol. 2023, 13, 323–331. [Google Scholar] [CrossRef]
- Ozisik, M.N. Heat Conduction, 1st ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Choudhury, K.R.; Rogers, D.J. Steady-State Thermal Modeling of a Power Module: An NN-Layer Fourier Approach. IEEE Trans. Power Electron. 2019, 34, 1500–1508. [Google Scholar] [CrossRef]
- Muzychka, Y.S.; Bagnall, K.R.; Wang, E.N. Thermal Spreading Resistance and Heat Source Temperature in Compound Orthotropic Systems With Interfacial Resistance. IEEE Trans. Components, Packag. Manuf. Technol. 2013, 3, 1826–1841. [Google Scholar] [CrossRef]
- Choudhury, K.R.; Rogers, D.J. Transient Thermal Modeling of a Power Module: An N-Layer Fourier Approach. IEEE Trans. Power Electron. 2020, 35, 10580–10591. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Zhou, Y. Physics-based thermal impedance model for power module by analytic Fourier series based heat spreading angle. Proc. CSEE 2022, 5, 715–728. [Google Scholar]
Method | Accuracy | Speed | |
---|---|---|---|
Heat diffusion angle | Fixed value [14,16,18,19] | low | fast |
The inverse tangent value of the ratio of thermal conductivity [20,21,22] | low | fast | |
Heat flux density curve by the FEM [23] | high | slow | |
Proposed method | high | fast | |
Reference | Shortcoming | ||
Thermal coupling effects | [24,30] | thermal coupling region resistance is not provided | |
[25,29] | difficult to implement | ||
[26,27,28] | slow calculation | ||
Reference | Accuracy | Speed | |
Temperature sensitivity | [23,31,32] | high | slow |
[33] | low | slow | |
proposed method | high | fast |
Parameter | Value | Parameter | Value |
---|---|---|---|
a | 30.3 mm | ||
b | 28 mm | ||
c | 7.2 mm | ||
d | 6.75 mm | ||
0.15 mm | |||
0.1 mm | |||
0.3 mm | 11.25 mm | ||
0.38 mm | 14.485 mm | ||
0.12 mm | 25 mm | ||
2.8 mm | 22 mm | ||
25 °C | |||
Method | Junction Temperature (°C) | Error (%) |
---|---|---|
FEM | 139.51 | 0 |
Proposed method considering TS | 111.15 | 20.33 |
Proposed method considering TS and TCE | 128.72 | 7.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liang, Z.; Jin, B.; Pang, J. A Thermal Impedance Model for IGBT Modules Considering the Nonlinear Thermal Characteristics of Chips and Ceramic Materials. Electronics 2024, 13, 4465. https://doi.org/10.3390/electronics13224465
Wang Y, Liang Z, Jin B, Pang J. A Thermal Impedance Model for IGBT Modules Considering the Nonlinear Thermal Characteristics of Chips and Ceramic Materials. Electronics. 2024; 13(22):4465. https://doi.org/10.3390/electronics13224465
Chicago/Turabian StyleWang, Yingying, Zuhuo Liang, Bolin Jin, and Jindi Pang. 2024. "A Thermal Impedance Model for IGBT Modules Considering the Nonlinear Thermal Characteristics of Chips and Ceramic Materials" Electronics 13, no. 22: 4465. https://doi.org/10.3390/electronics13224465
APA StyleWang, Y., Liang, Z., Jin, B., & Pang, J. (2024). A Thermal Impedance Model for IGBT Modules Considering the Nonlinear Thermal Characteristics of Chips and Ceramic Materials. Electronics, 13(22), 4465. https://doi.org/10.3390/electronics13224465