A Novel 3D 2TnC FeRAM Architecture and Operation Scheme with Improved Disturbance for High-Bit-Density Dynamic Random-Access Memory
Abstract
:1. Introduction
2. Three-Dimensional 2TnC FeRAM Architecture
3. TCAD Simulation Setup
4. Simulation Results and Discussion
4.1. Basic Operation Characteristics
4.2. Disturbance in Array-Level Operation
4.3. Data Sensing with Multi-Capacitors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ha, D.; Lee, Y.; Yoo, S.; Lee, W.; Cho, M.H.; Yoo, K.; Lee, S.M.; Lee, S.; Terai, M.; Lee, T.H.; et al. Exploring Innovative IGZO-Channel Based DRAM Cell Architectures and Key Technologies for Sub-10 nm Node. In Proceedings of the 2024 IEEE International Memory Workshop (IMW), Seoul, Republic of Korea, 12–15 May 2024; pp. 1–4. [Google Scholar]
- Asifuzzaman, K.; Miniskar, N.R.; Young, A.R.; Liu, F.; Vetter, J.S. A survey on processing-in-memory techniques: Advances and challenges. Mem.—Mater. Devices Circuits Syst. 2023, 4, 100022. [Google Scholar] [CrossRef]
- Spessot, A.; Oh, H. 1T-1C Dynamic Random Access Memory Status, Challenges, and Prospects. IEEE Trans. Electron Devices 2020, 67, 1382–1393. [Google Scholar] [CrossRef]
- Han, J.W.; Park, S.H.; Jeong, M.Y.; Lee, K.S.; Kim, K.N.; Kim, H.J.; Shin, J.C.; Park, S.M.; Shin, S.H.; Park, S.W.; et al. Ongoing Evolution of DRAM Scaling via Third Dimension-Vertically Stacked DRAM. In Proceedings of the 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 11–16 June 2023; pp. 1–2. [Google Scholar]
- Lee, S.; Choi, B. Highly Stackable 3D Capacitor-Less DRAM for a High-Performance Hybrid Memory. IEEE Electron Device Lett. 2022, 43, 2089–2092. [Google Scholar] [CrossRef]
- Ansari, M.d.H.R.; Singh, J. Capacitorless 2T-DRAM for Higher Retention Time and Sense Margin. IEEE Trans. Electron Devices 2020, 67, 902–906. [Google Scholar] [CrossRef]
- Ansari, M.d.H.R.; Navlakha, N.; Lee, J.Y.; Cho, S. Double-Gate Junctionless 1T DRAM with Physical Barriers for Retention Improvement. IEEE Trans. Electron Devices 2020, 67, 1471–1479. [Google Scholar] [CrossRef]
- Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today 2017, 20, 530–548. [Google Scholar] [CrossRef]
- Ishibe, T.; Maeda, Y.; Terada, T.; Naruse, N.; Mera, Y.; Kobayashi, E.; Nakamura, Y. Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces. Technol. Adv. Mater. 2020, 21, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, A.J.; Gaidis, M.C.; Thomas, L.; Chien, C.W.; Hung, C.C.; Chevalier, P.; O’Sullivan, E.J.; Hummel, J.P.; Joseph, E.A.; Zhu, Y.; et al. Racetrack Memory Cell Array with Integrated Magnetic Tunnel Junction Readout. In Proceedings of the 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 539–541. [Google Scholar]
- Atkinson, D.; Eastwood, D.S.; Bogart, L.K. Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept. Appl. Phys. Lett. 2008, 92, 022510. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, D.H.; Park, G.H.; Lee, J.; Lee, Y.; Park, M.H. A Perspective on the Physical Scaling down of Hafnia-Based Ferroelectrics. Nanotechnology 2023, 34, 202001. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, U.; Park, M.H.; Mikolajick, T.; Hwang, C.S. The Fundamentals and Applications of Ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653–669. [Google Scholar] [CrossRef]
- Xiao, Y.; Deng, S.; Faris, Z.; Xu, Y.; Huang, T.; Narayanan, V.; Ni, K. Quasi-Nondestructive Read Out of Ferroelectric Capacitor Polarization by Exploiting a 2TnC Cell to Relax the Endurance Requirement. IEEE Electron Device Lett. 2023, 44, 1436–1440. [Google Scholar] [CrossRef]
- Haratipour, N.; Chang, S.-C.; Shivaraman, S.; Neumann, C.; Liao, Y.-C.; Alpizar, B.G.; Tung, I.-C.; Li, H.; Kumar, V.; Doyle, B.; et al. Hafnia-Based FeRAM: A Path Toward Ultra-High Density for Next-Generation High-Speed Embedded Memory. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 6.7.1–6.7.4. [Google Scholar]
- Slesazeck, S.; Ravsher, T.; Havel, V.; Breyer, E.T.; Mulaosmanovic, H.; Mikolajick, T. A 2TnC Ferroelectric Memory Gain Cell Suitable for Compute-in-Memory and Neuromorphic Application. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 38.6.1–38.6.4. [Google Scholar]
- Xiao, Y.; Xu, Y.; Deng, S.; Zhao, Z.; George, S.; Ni, K.; Narayanan, V. A Compact Ferroelectric 2T-(N + 1)C Cell to Implement AND-OR Logic in Memory. In Proceedings of the 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Foz do Iguacu, Brazil, 20–23 June 2023; pp. 1–6. [Google Scholar]
- Ramaswamy, N.; Calderoni, A.; Zahurak, J.; Servalli, G.; Chavan, A.; Chhajed, S.; Balakrishnan, M.; Fischer, M.; Hollander, M.; Ettisserry, D.P.; et al. NVDRAM: A 32Gb Dual Layer 3D Stacked Non-Volatile Ferroelectric Memory with Near-DRAM Performance for Demanding AI Workloads. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar]
- Chavan, A.; Rajagopal, A.; Yan, Y.; Asano, I.; Ettisserry, D.; Antonov, V.; Servalli, G.; Calderoni, A.; Ramaswamy, N. Materials Engineering for High Performance Ferroelectric Memory. In Proceedings of the 2024 IEEE International Memory Workshop (IMW), Seoul, Republic of Korea, 12–15 May 2024; pp. 1–4. [Google Scholar]
- Jin, C.; Saraya, T.; Hiramoto, T.; Kobayashi, M. Transient Negative Capacitance as Cause of Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance in Ferroelectric FETs. In Proceedings of the 2019 Symposium on VLSI Technloogy, Kyoto, Japan, 9–14 June 2019; pp. T220–T221. [Google Scholar]
- Song, J.; Sim, J.-M.; Kim, B.; Song, Y.-H. Concave and Convex Structures for Advanced 3-D NAND Flash Memory Technology. IEEE Trans. Electron Devices 2024, 71, 2810–2814. [Google Scholar] [CrossRef]
- Sentaurus Device UserGuide, Version J-2021.06-June; Synopsys, Inc.: Mountain View, CA, USA, 2021.
- Walke, A.M.; Popovici, M.I.; Sharifi, S.H.; Demir, E.C.; Puliyalil, H.; Bizindavyi, J.; Yasin, F.; Clima, S.; Fantini, A.; Belmonte, A.; et al. La Doped HZO-Based 3D-Trench Metal-Ferroelectric-Metal Capacitors with High-Endurance (>1012) for FeRAM Applications. IEEE Electron Device Lett. 2024, 45, 578–581. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, D.; Wang, Z.; Yang, J. Design and Simulation Analysis of a 3TnC MLC FeRAM Using a Nondestructe Readout and Offset-Canceled Sense Amplifier for High-Density Storage Applications. Micromachines 2023, 14, 1572. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.-S.; Choi, E.-S.; Jung, S.-W.; Kim, S.-H.; Yoo, H.-S.; Jeon, K.-S.; Joo, H.-S.; Oh, J.-S.; Jang, Y.-S.; Park, K.-J.; et al. Inherent Issues and Challenges of Program Disturbance of 3D NAND Flash Cell. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012; pp. 1–4. [Google Scholar]
Parameter (Symbol) | Value (Unit) | |
---|---|---|
Material parameter | Saturation polarization (Ps) | 54 (μC/cm2) |
Remnant polarization (Pr) | 38 (μC/cm2) | |
Coercive field (Ec) | 1.3 (MV/cm) | |
Relaxation time (τ) | 2 (ns) | |
Dielectric constant (εFE) | 25 (ε0) | |
Doping concentration of polysilicon | 1 × 1020 (cm−3) | |
Design parameter | Number of PL | 5 |
Selected PL | 2 | |
Gate length of the memory cell (LG) | 100 (nm) | |
Spacer length (LS) | 60 (nm) | |
Ferroelectric layer thickness (TFE) | 5 (nm) | |
Radius of memory hole (RHOLE) | 100 (nm) | |
Gate length of access transistor (LTR) | 150 (nm) | |
Gate oxide thickness of access transistor (TOX) | 5 (nm) | |
Polysilicon channel thickness (TCH) | 20 (nm) |
Number of Bit 1 | Data Pattern in Selected String (PL4-PL3-PL2-PL1-PL0) | Target Cell (PL2) |
---|---|---|
0 | 00x00 | 0 or 1 |
1 | 00x01, 00x10, …, 10x00 | |
2 | 00x11, 01x01, …, 11x00 | |
3 | 01x11, 10x11, …, 11x10 | |
4 | 11x11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-y.; Song, J.; Choi, S.; Sim, J.-m.; Song, Y.-H. A Novel 3D 2TnC FeRAM Architecture and Operation Scheme with Improved Disturbance for High-Bit-Density Dynamic Random-Access Memory. Electronics 2024, 13, 4474. https://doi.org/10.3390/electronics13224474
Lee J-y, Song J, Choi S, Sim J-m, Song Y-H. A Novel 3D 2TnC FeRAM Architecture and Operation Scheme with Improved Disturbance for High-Bit-Density Dynamic Random-Access Memory. Electronics. 2024; 13(22):4474. https://doi.org/10.3390/electronics13224474
Chicago/Turabian StyleLee, Ji-yeon, Jiho Song, Seonjun Choi, Jae-min Sim, and Yun-Heub Song. 2024. "A Novel 3D 2TnC FeRAM Architecture and Operation Scheme with Improved Disturbance for High-Bit-Density Dynamic Random-Access Memory" Electronics 13, no. 22: 4474. https://doi.org/10.3390/electronics13224474
APA StyleLee, J. -y., Song, J., Choi, S., Sim, J. -m., & Song, Y. -H. (2024). A Novel 3D 2TnC FeRAM Architecture and Operation Scheme with Improved Disturbance for High-Bit-Density Dynamic Random-Access Memory. Electronics, 13(22), 4474. https://doi.org/10.3390/electronics13224474