Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature
Abstract
:1. Introduction
1.1. CQDs—A New Type of Phosphorescent Material
1.2. Synthesis of CQDs
2. Dependence of Light Emission—Factors
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shabbir, H.; Wojnicki, M. Recent Progress of Non-Cadmium and Organic Quantum Dots for Optoelectronic Applications with a Focus on Photodetector Devices. Electronics 2023, 12, 1327. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, X. The Emerging Development of Multicolor Carbon Dots. Small 2022, 18, 2205099. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Shabbir, H.; Csapó, E.; Wojnicki, M. Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing. Inorganics 2023, 11, 262. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y. Carbon Quantum Dots as Fluorescence Sensors for Label-Free Detection of Folic Acid in Biological Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117931. [Google Scholar] [CrossRef]
- Chellasamy, G.; Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Green Synthesized Carbon Quantum Dots from Maple Tree Leaves for Biosensing of Cesium and Electrocatalytic Oxidation of Glycerol. Chemosphere 2022, 287, 131915. [Google Scholar] [CrossRef]
- Yuan, T.; Yuan, F.; Sui, L.; Zhang, Y.; Li, Y.; Li, X.; Tan, Z.; Fan, L. Carbon Quantum Dots with Near-Unity Quantum Yield Bandgap Emission for Electroluminescent Light-Emitting Diodes. Angew. Chem. Int. Ed. 2023, 62, e202218568. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Meng, T.; Yuan, T.; Ni, R.; Li, Y.; Li, X.; Zhang, Y.; Tan, Z.; Lei, S.; et al. Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. J. Am. Chem. Soc. 2021, 143, 18941–18951. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Song, W.; Wei, L.; Wu, P. Preparation of Ethanediamine-Doped Carbon Quantum Dots and Their Applications in White LEDs and Fluorescent TLC Plate. Carbon Lett. 2022, 32, 581–589. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 2017, 29, 1604436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv. Mater. 2017, 29, 1702910. [Google Scholar] [CrossRef] [PubMed]
- Alhalaby, H.; Zaraket, H.; Principe, M. Enhanced Photoluminescence with Dielectric Nanostructures: A Review. Results Opt. 2021, 3, 100073. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem. Int. Ed. 2015, 54, 5360–5363. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-Color Fluorescent Carbon Quantum Dots. Sci. Adv. 2020, 6, eabb6772. [Google Scholar] [CrossRef]
- Da, X.; Han, Z.; Yang, Z.; Zhang, D.; Hong, R.; Tao, C.; Lin, H.; Huang, Y. Preparation of Multicolor Carbon Dots with High Fluorescence Quantum Yield and Application in White LED. Chem. Phys. Lett. 2022, 794, 139497. [Google Scholar] [CrossRef]
- Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green Synthesis of Carbon Dots from Ocimum Sanctum for Effective Fluorescent Sensing of Pb2+ Ions and Live Cell Imaging. Sens. Actuators B Chem. 2017, 242, 679–686. [Google Scholar] [CrossRef]
- Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-Derived Nitrogen-Doped Carbon Quantum Dots: Highly Selective Fluorescent Probe for Detecting Fe 3+ Ions and Tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef]
- Shabbir, H.; Tokarski, T.; Ungor, D.; Wojnicki, M. Eco Friendly Synthesis of Carbon Dot by Hydrothermal Method for Metal Ions Salt Identification. Materials 2021, 14, 7604. [Google Scholar] [CrossRef] [PubMed]
- Wojnicki, M.; Hessel, V. Quantum Materials Made in Microfluidics—Critical Review and Perspective. Chem. Eng. J. 2022, 438, 135616. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Liu, G.; Zhang, Y.; Han, G.; Vomiero, A.; Zhao, H. Colloidal Carbon Quantum Dots as Light Absorber for Efficient and Stable Ecofriendly Photoelectrochemical Hydrogen Generation. Nano Energy 2021, 86, 106122. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.-S.; Zhang, P.; Zhou, Z.-Y.; Gao, Q.-Y.; Xiong, H.-M. Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small 2018, 14, 1800612. [Google Scholar] [CrossRef] [PubMed]
- Dua, S.; Kumar, P.; Pani, B.; Kaur, A.; Khanna, M.; Bhatt, G. Stability of Carbon Quantum Dots: A Critical Review. RSC Adv. 2023, 13, 13845–13861. [Google Scholar] [CrossRef]
- Hofmann, M.S.; Glückert, J.T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, Long-Lived and Coherent Excitons in Carbon Nanotube Quantum Dots. Nat. Nanotechnol. 2013, 8, 502–505. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.-S.; Zhong, N.; Gao, Q.-Y.; Xiong, H.-M. Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir 2017, 33, 12635–12642. [Google Scholar] [CrossRef]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- McEnroe, A.; Brunt, E.; Mosleh, N.; Yu, J.; Hailstone, R.; Sun, X. Bright, Green Fluorescent Carbon Dots for Sensitive and Selective Detection of Ferrous Ions. Talanta Open 2023, 7, 100236. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Zhang, K.; Yang, M.; Sun, H.; Yang, B. One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small 2018, 14, 1703919. [Google Scholar] [CrossRef]
- Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.-W.; Meng, X.; Lee, C.-S.; Wang, P.; Zhang, W. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, G.; Izwan Misnon, I.; Jose, R. Solvothermal Synthesis of Green Fluorescent Carbon Dots from Palm Kernel Shells. Mater. Today Proc. 2023, In Press. [Google Scholar] [CrossRef]
- Ozyurt, D.; Al Kobaisi, M.; Hocking, R.K.; Fox, B. Properties, Synthesis, and Applications of Carbon Dots: A Review. Carbon Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Basics of Green Chemistry. United States Environmental. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry (accessed on 31 October 2024).
- Xu, K.-F.; Jia, H.-R.; Wang, Z.; Feng, H.-H.; Li, L.-Y.; Zhang, R.; Durrani, S.; Lin, F.; Wu, F.-G. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small 2023, 19, 2205890. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Liu, Y.; Li, H.; Qi, W.; Sun, K. Luminescence of Carbon Quantum Dots and Their Application in Biochemistry. Heliyon 2023, 9, e20317. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.B.; Truong, N.T.; Wanekaya, A.K. Improving the Quantum Yield of Nitrogen-Doped Carbon Dots by Varying Dopant Ratios and PH. Sens. Actuators Rep. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Yang, H.L.; Bai, L.F.; Geng, Z.R.; Chen, H.; Xu, L.T.; Xie, Y.C.; Wang, D.J.; Gu, H.W.; Wang, X.M. Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Khoshnood, A.; Farhadian, N.; Abnous, K.; Matin, M.M.; Ziaee, N.; Yaghoobi, E. N Doped-Carbon Quantum Dots with Ultra-High Quantum Yield Photoluminescent Property Conjugated with Folic Acid for Targeted Drug Delivery and Bioimaging Applications. J. Photochem. Photobiol. A Chem. 2023, 444, 114972. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Adv. Mater. 2015, 27, 7782–7787. [Google Scholar] [CrossRef]
- Lai, Z.; Yang, X.; Li, A.; Qiu, Y.; Cai, J.; Yang, P. Facile Preparation of Full-Color Emissive Carbon Dots and Their Applications in Imaging of the Adhesion of Erythrocytes to Endothelial Cells. J. Mater. Chem. B 2017, 5, 5259–5264. [Google Scholar] [CrossRef]
- Yao, Z.; Lai, Z.; Chen, C.; Xiao, S.; Yang, P. Full-Color Emissive Carbon-Dots Targeting Cell Walls of Onion for in Situ Imaging of Heavy Metal Pollution. Analyst 2019, 144, 3685–3690. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Wu, Y.; Zhang, R.; Cao, Y.; Xu, X.; Chen, X.; Cai, L.; Xu, Q. Multicolor Tunable Highly Luminescent Carbon Dots for Remote Force Measurement and White Light Emitting Diodes. Chem. Commun. 2019, 55, 12164–12167. [Google Scholar] [CrossRef]
- Shen, C.; Lou, Q.; Lv, C.; Zang, J.; Qu, S.; Dong, L.; Shan, C. Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Adv. Sci. 2019, 6, 1802331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zheng, X.; Zhang, H.; Xu, M.; Wang, S.; Yang, Q.; Xiong, C. Multi-Color Fluorescent Carbon Dots with Single Wavelength Excitation for White Light-Emitting Diodes. J. Alloys Compd. 2019, 793, 613–619. [Google Scholar] [CrossRef]
- Kotańska, M.; Wojtaszek, K.; Kubacka, M.; Bednarski, M.; Nicosia, N.; Wojnicki, M. The Influence of Caramel Carbon Quantum Dots and Caramel on Platelet Aggregation, Protein Glycation and Lipid Peroxidation. Antioxidants 2024, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, H.; Wojtaszek, K.; Rutkowski, B.; Csapó, E.; Bednarski, M.; Adamiec, A.; Głuch-Lutwin, M.; Mordyl, B.; Druciarek, J.; Kotańska, M.; et al. Milk-Derived Carbon Quantum Dots: Study of Biological and Chemical Properties Provides Evidence of Toxicity. Molecules 2022, 27, 8728. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.; Silvestri, A.; Criado, A.; Bettini, S.; Prato, M.; Valli, L. Tailoring the Sensing Abilities of Carbon Nanodots Obtained from Olive Solid Wastes. Carbon 2020, 167, 696–708. [Google Scholar] [CrossRef]
- Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016, 6, 72423–72432. [Google Scholar] [CrossRef]
- Nguyen, K.G.; Baragau, I.-A.; Gromicova, R.; Nicolaev, A.; Thomson, S.A.J.; Rennie, A.; Power, N.P.; Sajjad, M.T.; Kellici, S. Investigating the Effect of N-Doping on Carbon Quantum Dots Structure, Optical Properties and Metal Ion Screening. Sci. Rep. 2022, 12, 13806. [Google Scholar] [CrossRef]
- Liu, H.; He, Z.; Jiang, L.-P.; Zhu, J.-J. Microwave-Assisted Synthesis of Wavelength-Tunable Photoluminescent Carbon Nanodots and Their Potential Applications. ACS Appl. Mater. Interfaces 2015, 7, 4913–4920. [Google Scholar] [CrossRef]
- Prathumsuwan, T.; Jamnongsong, S.; Sampattavanich, S.; Paoprasert, P. Preparation of Carbon Dots from Succinic Acid and Glycerol as Ferrous Ion and Hydrogen Peroxide Dual-Mode Sensors and for Cell Imaging. Opt. Mater. 2018, 86, 517–529. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Aseer, K.R.; Perumal, S.; Karthik, N.; Lee, Y.R. Highly Fluorescent Nitrogen-Doped Carbon Dots Derived from Phyllanthus Acidus Utilized as a Fluorescent Probe for Label-Free Selective Detection of Fe3+ Ions, Live Cell Imaging and Fluorescent Ink. Biosens. Bioelectron. 2018, 99, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhu, C.; Song, J.; Li, H.; Du, D.; Lin, Y. Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe3+ in Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 7399–7405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Hu, S.; Wang, Y.; Li, Z.; Lin, H. Photo-Stimulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small 2020, 16, 2001909. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Lu, C.; Yang, X. Efficient Room Temperature Phosphorescence Carbon Dots: Information Encryption and Dual-Channel PH Sensing. Carbon 2019, 152, 609–615. [Google Scholar] [CrossRef]
- Jiao, T.; Wen, H.; Dong, W.; Wen, W.; Li, Z. Metal Ion (Fe3+ and Cu2+) Catalyzed Synthesis of High Quantum Yield Carbon Dots. Mater. Lett. 2022, 324, 132575. [Google Scholar] [CrossRef]
- Niu, F.; Xu, Y.; Liu, J.; Song, Z.; Liu, M.; Liu, J. Controllable Electrochemical/Electroanalytical Approach to Generate Nitrogen-Doped Carbon Quantum Dots from Varied Amino Acids: Pinpointing the Utmost Quantum Yield and the Versatile Photoluminescent and Electrochemiluminescent Applications. Electrochim. Acta 2017, 236, 239–251. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Zhang, H.; Liu, C.; Zhang, Y. Highly Luminescent Organosilane-Functionalized Carbon Dots. Adv. Funct. Mater. 2011, 21, 1027–1031. [Google Scholar] [CrossRef]
- Saikia, M.; Hazarika, A.; Roy, K.; Khare, P.; Dihingia, A.; Konwar, R.; Saikia, B.K. Waste-Derived High-Yield Biocompatible Fluorescent Carbon Quantum Dots for Biological and Nanofertiliser Applications. J. Environ. Chem. Eng. 2023, 11, 111344. [Google Scholar] [CrossRef]
- Gupta, A.; Nandi, C.K. PC12 Live Cell Ultrasensitive Neurotransmitter Signaling Using High Quantum Yield Sulphur Doped Carbon Dots and Its Extracellular Ca2+ Ion Dependence. Sens. Actuators B Chem. 2017, 245, 137–145. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, F.; Xu, J.; Zhang, H.; Chen, L. Solvent-Controlled Synthesis Strategy of Multicolor Emission Carbon Dots and Its Applications in Sensing and Light-Emitting Devices. Nano Res. 2022, 15, 414–422. [Google Scholar] [CrossRef]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; et al. Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs. Nat. Commun. 2018, 9, 2249. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Huang, J.; Ding, L. Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. J. Nanomater. 2019, 2019, 5037243. [Google Scholar] [CrossRef]
- Liu, J.; Kong, T.; Xiong, H.-M. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Adv. Mater. 2022, 34, 2200152. [Google Scholar] [CrossRef]
- Emami, E.; Mousazadeh, M.H. Green Synthesis of Carbon Dots for Ultrasensitive Detection of Cu2+ and Oxalate with Turn On-off-on Pattern in Aqueous Medium and Its Application in Cellular Imaging. J. Photochem. Photobiol. A Chem. 2021, 418, 113443. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zheng, Y.; Wang, K.; Zhang, H.; Feng, Z.; Huang, B.; Wen, H.; Wu, J.; Xue, W.; et al. Construction of Optical Dual-Mode Sensing Platform Based on Green Emissive Carbon Quantum Dots for Effective Detection of ClO- and Cellular Imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 309, 123733. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Wang, J.; Yang, Y.; Liu, X. The Synthesis of Green Fluorescent Carbon Dots for Warm White LEDs. RSC Adv. 2018, 8, 19585–19595. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Q.; Sun, L.; Guo, X.; Zhang, H.; Zhao, X. Green Fluorescent Carbon Dots from Chitosan as Selective and Sensitive “off-on” Probes for Nitrite and “on-off-on” Probes for Enrofloxacin Detection. J. Alloys Compd. 2022, 908, 164519. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, R.; Zhang, Y.; Cheng, S.; Zhang, Y. High Quantum Yield Nitrogen Doped Carbon Dots for Ag+ Sensing and Bioimaging. J. Mol. Struct. 2023, 1283, 135212. [Google Scholar] [CrossRef]
- Khan, W.U.; Wang, D.; Zhang, W.; Tang, Z.; Ma, X.; Ding, X.; Du, S.; Wang, Y. High Quantum Yield Green-Emitting Carbon Dots for Fe(III) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Sci. Rep. 2017, 7, 14866. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Shinoda, M.; Iso, Y.; Isobe, T.; Ogura, A.; Takao, K. Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS Omega 2021, 6, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, W.R.; Li, Y.; Zou, X.; Li, W.; Liang, J.; Zhang, H.; Liu, Y.; Zhang, X.; Hu, C.; et al. Architecting Ultra-Bright Silanized Carbon Dots by Alleviating the Spin-Orbit Coupling Effect: A Specific Fluorescent Nanoprobe to Label Dead Cells. Chem. Eng. J. 2022, 428, 131168. [Google Scholar] [CrossRef]
- Mai, X.D.; Nguyen, S.H.; Tran, D.L.; Nguyen, V.Q.; Nguyen, V.H. Single-Chip Horticultural LEDs Enabled by Greenly Synthesized Red-Emitting Carbon Quantum Dots. Mater. Lett. 2023, 341, 134195. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, W.; Hong, J.; Zheng, Y.; Fan, H.; Zhang, J.; Fei, J.; Zhu, W.; Hong, J. A Molecularly Imprinted Ratiometric Fluorescence Sensor Based on Blue/Red Carbon Quantum Dots for the Visual Determination of Thiamethoxam. Biosens. Bioelectron. 2023, 238, 115559. [Google Scholar] [CrossRef]
- Shi, P.; Song, Y.; Tang, J.; Nie, Z.; Chang, J.; Chen, Q.; He, Y.; Guo, T.; Zhang, J.; Wang, H. Ultra-Narrow Bandwidth Red-Emission Carbon Quantum Dots and Their Bio-Imaging. Phys. E Low-Dimens. Syst. Nanostructures 2022, 142, 115197. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, H.; Geng, X.; Yang, R.; Qu, L.; Kani, A.N.; Li, Z. Rational Design of Far-Red to Near-Infrared Emitting Carbon Dots for Ultrafast Lysosomal Polarity Imaging. ACS Appl. Mater. Interfaces 2020, 12, 31738–31744. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, J.-S.; Zhang, P.; Niu, X.-Q.; Zhao, W.; Zhu, Z.-Y.; Ding, H.; Xiong, H.-M. Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Appl. Mater. Interfaces 2017, 9, 18429–18433. [Google Scholar] [CrossRef]
- Gao, W.; Song, H.; Wang, X.; Liu, X.; Pang, X.; Zhou, Y.; Gao, B.; Peng, X. Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in Vitro and in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 1147–1154. [Google Scholar] [CrossRef]
- Liu, C.; Fan, W.; Cheng, W.-X.; Gu, Y.; Chen, Y.; Zhou, W.; Yu, X.-F.; Chen, M.; Zhu, M.; Fan, K.; et al. Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Adv. Funct. Mater. 2023, 33, 2213856. [Google Scholar] [CrossRef]
- Kim, B.S.; Oh, G.H.; Song, Y.; Lee, Y.S.; Kim, S. Acid Catalyzed Microwave-Assisted Production of Full-Color Light Emissive Carbon Quantum Dots for CCT-Tunable WLEDs. Appl. Surf. Sci. 2023, 640, 158301. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, L.; Jiang, K.; Wu, A.; Lin, H. Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chem. Mater. 2016, 28, 8659–8668. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Li, W.; Luo, X.; Hu, Z.; Wu, F. Facile Synthesis of Efficient Red-Emissive Carbon Quantum Dots as a Multifunctional Platform for Biosensing and Bioimaging. Dye. Pigment. 2023, 215, 111303. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Zhang, Z.; Lei, J.H.; Liu, T.M.; Xing, G.; Deng, C.X.; Tang, Z.; Qu, S. One Step Synthesis of Efficient Red Emissive Carbon Dots and Their Bovine Serum Albumin Composites with Enhanced Multi-Photon Fluorescence for in Vivo Bioimaging. Light Sci. Appl. 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, Y.; Chen, Y.; Lei, B.; Zhuang, J.; Xiao, Y.; Liang, Y.; Zheng, M.; Zhang, H.; Liu, Y. Solid-State Carbon Dots with Red Fluorescence and Efficient Construction of Dual-Fluorescence Morphologies. Small 2017, 13, 1700075. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gu, C.; Jiao, Y.; Gao, Y.; Liu, X.; Guo, J.; Qian, T. Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta 2023, 253, 123975. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; He, P.; Xi, Z.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. Highly Efficient and Stable White LEDs Based on Pure Red Narrow Bandwidth Emission Triangular Carbon Quantum Dots for Wide-Color Gamut Backlight Displays. Nano Res. 2019, 12, 1669–1674. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Yuan, T.; Yuan, F.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Electroluminescent Warm White Light-Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Adv. Sci. 2019, 6, 1900397. [Google Scholar] [CrossRef]
- Yuan, B.; Guan, S.; Sun, X.; Li, X.; Zeng, H.; Xie, Z.; Chen, P.; Zhou, S. Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 16005–16014. [Google Scholar] [CrossRef]
- Liu, Y.; Gou, H.; Huang, X.; Zhang, G.; Xi, K.; Jia, X. Rational Synthesis of Highly Efficient Ultra-Narrow Red-Emitting Carbon Quantum Dots for NIR-II Two-Photon Bioimaging. Nanoscale 2020, 12, 1589–1601. [Google Scholar] [CrossRef]
- Zhan, J.; Geng, B.; Wu, K.; Xu, G.; Wang, L.; Guo, R.; Lei, B.; Zheng, F.; Pan, D.; Wu, M. A Solvent-Engineered Molecule Fusion Strategy for Rational Synthesis of Carbon Quantum Dots with Multicolor Bandgap Fluorescence. Carbon 2018, 130, 153–163. [Google Scholar] [CrossRef]
- Su, R.; Guan, Q.; Cai, W.; Yang, W.; Xu, Q.; Guo, Y.; Zhang, L.; Fei, L.; Xu, M. Multi-Color Carbon Dots for White Light-Emitting Diodes. RSC Adv. 2019, 9, 9700–9708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-Scale Synthesis of Carbon Quantum Dots with a Large Stokes Shift for the Fabrication of Eco-Friendly and High-Efficiency Luminescent Solar Concentrators. Energy Environ. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- Wei, X.; Yang, D.; Wang, L.; Wen, Z.; Cui, Z.; Wang, L.; He, H.; Zhang, W.; Han, Z.; Mei, S.; et al. Facile Synthesis of Red-Emissive Carbon Dots with Theoretical Understanding for Cellular Imaging. Colloids Surf. B Biointerfaces 2022, 220, 112869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, J.; Wang, S.; Dai, Z.; Qin, S.; Mei, S.; Zhang, W.; Guo, R. Carbon Quantum Dots for Long-Term Protection against UV Degradation and Acidification in Paper-Based Relics. ACS Appl. Mater. Interfaces 2024, 16, 5009–5018. [Google Scholar] [CrossRef]
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
- | Sucrose | Deionized water | Hydrothermal (160 °C; 2 h 15 min) | 340 | 440 | - | [46] |
N | Fat-free UHT cow milk | - | Hydrothermal (200 °C, 3 h) | 300 | 420 | - | [47] |
N | Olive solid wastes | Hydrogen peroxide | Pyrolysis (600 °C; 1 h) | 360 | 460 | 3.0 | [48] |
- | Lemon peel waste | Water | Hydrothermal (200 °C; 12 h) | 360 | 441 | 14 | [49] |
N, S | Garlic | Water | Hydrothermal (200 °C; 3 h) | 360 | 442 | 17.5 | [31] |
N | Rice residue, glycine | Deionized water | Hydrothermal (200 °C; 12 h) | 360 | 440 | 23.48 | [19] |
Gray synthesis | |||||||
N | M-phenylenediamine | Ethanol | Solvothermal (180°C; 12 h) | 365 | 435 | 4.8 | [15] |
- | Ascorbic acid | Deionized water | Hydrothermal (190°C; 6 h) | 350 | 430 | 6.3 | [21] |
N | Glucose, ammonia | Deionized water | Continuous hydrothermal fow synthesis (450 °C; 24.8 MPa) | 320 | 410 | 9.6 | [50] |
N | Poly(ethylenimine) | Water | Microwave assisted (180 °C; 200 W; 15 min) | 347 | 464 | 10 | [51] |
N | Succinic acid | Deionized water, glycerol | Hydrothermal (250 °C; 6 h) | 320–360 | 410 | 11.0 | [52] |
N | P. acidus fruits, aqueous ammonia | Double-distilled water | Hydrothermal (180 °C; 8 h) | 350 | 420 | 14 | [53] |
N | Aminosalicylic acid | Ethanol | Solvothermal (200 °C; 18 h) | 365 | 480 | 16.4 | [54] |
N | Succinic acid, diethylenetriamine | Deionized water | Hydrothermal (270 °C; 15 h) | 345 | 422 | 18.2 | [55] |
N | Citric acid, urea | Distilled deionized water | Microwave assisted (200 °C; 10 min) | 340 | 430 | 19.18 (pH = 11) | [37] |
N | O-phenylenediamine, 4-aminobenzenesulfonic acid | Ethanol | Solvothermal (180 °C; 12 h) | 355 | 450 | 25.0 | [16] |
N | Triethanolamine | Distilled water, phosphoric acid | Heating (3 min, 650 W) | 380 | 445 | 26.69 | [56] |
N | 3,5-diaminobenzoic acid | Ethanol | Solvothermal (200 °C; 8 h) | 380 | 450 | 29.2 | [45] |
N | Tartaric acid, triammonium citrate | water | Solvothermal (180 °C; 8 h) | 395 | 440 | 43.6 | [17] |
- | Polyvinyl pyrrolidone, ascorbic acid (in presence of Fe3+ or Cu2+) | Distilled water | Hydrothermal (80 °C; 12 h) | 350 | 440 | 44.42 (for Cu-CDs) | [57] |
N | Amino acids a.o. L-aspartic acid | Distilled water, ammonia | Electrochemical | 365 | 435 | 46.2 | [58] |
Si | Citric acid anhydrous | N-(β-aminoethyl)-γ-aminopropyl methyldimethoxy silane | Pyrolysis (240 °C; 1 min) | 360 | 450 | 47 | [59] |
N | Citric acid, urea | Deionized water | Solvothermal (160 °C; 8 h) | 365 | 476 | 48 | [44] |
N | L-glutamic acid, o-phenylenediamine | Formamide | Solvothermal (210 °C; 10 h) | 389 | 443 | 54.2 | [24] |
N | Petroleum coke | Hydrogen peroxide | Ultrasonic-induced chemical oxidation | 320 | 445 | 55.14 | [60] |
S | Trisodium citrate solution, sodium thiosulfate | Distilled water | Microwave assisted pyrolysis method | 380 | 425 | 58.0 | [61] |
N | Citric acid (CA), Nile Blue A (NBA) | Deionized water | Solvothermal (200 °C; 5 h) | 340 | 440 | 64 | [62] |
N, S | Tobias acid, o-phenylenediamine | Formamide | Solvothermal (210 °C; 10 h) | 420 | 495 | 65.1 | [43] |
- | Phloroglucinol | Ethanol | Solvothermal (200 °C; 9 h) | 460 | 472 | 66 | [63] |
N | Citric acid, 2,3-diaminonaphthalene | Ethanol | Solvothermal (200 °C; 4 h) | 365 | 430 | 75 | [12] |
N, S | L-cysteine, citric acid | Deionized water | Microwave-assisted rapid synthesis | 355 | 439 | 85.0 | [64] |
N | Citric acid, polyethylene glycol (PEG-2000) | Deionized water, ethylenediamine | Hydrothermal (160 °C; 8 h) | 360 | ~445 | 88.32 (pH = 11) | [39] |
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
N | Mulberry leaves | Ethanol, water | Solvothermal (150 °C; 4 h) | - | 500 | - | [65] |
N, Al, Ag | Tulsi leaves (Ocimum sanctum) | Distilled water | Hydrothermal (180 °C; 4 h) | 450 | 500 | 9.3 | [18] |
N | Algae powder | Deionized water | Hydrothermal (180 °C; 1 h) | 450 | 520 | 32 | [66] |
Gray synthesis | |||||||
- | Succinic acid | Deionized water | Hydrothermal (250 °C; 6 h) | 420–460 | 525 | 7.0 | [52] |
N | Citric acid, acriflavine | Distilled water | Hydrothermal (180 °C; 6 h) | 460 | 515 | 10.86 | [67] |
N | Triethanolamine | Distilled water, phosphoric acid | Microwave heating (3 min; 650 W) | 356 | 518 | 15.85 (only coated on paper) | [56] |
N | Pyrogallic acid | DMF | Solvothermal (180 °C; 14 h) | 420 | 520 | 16.8 | [68] |
N | O-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 420 | 535 | 17.6 | [15] |
N | Chitosan, p-phenylenediamine | Acetic acid | Hydrothermal (220 °C; 18 h) | 390 | 520 | 19 | [69] |
N | M-phenylenediamine, ethylenediamine | Water | Hydrothermal (150 °C; 3 h) | 415 | 510 | 25.5 | [29] |
N, S | O-phenylenediamine, 4-aminobenzenesulfonic acid | Ethanol | Solvothermal (180 °C; 12 h) | 420 | 500 | 28.0 | [16] |
N | Citric acid, urea | Dimethylacetamide | Solvothermal (160 °C; 8 h) | 365 | 543 | 33 | [44] |
N | O-aminophenol, ethylenediamine | Distilled water | Hydrothermal (200 °C; 10 h) | 430 | 510 | 38.4 | [70] |
N | Palm kernel shells | DMF | Solvothermal (180 °C; 12 h) | 440 | 520 | 39.3 | [32] |
N | L-glutamic acid, o-phenylenediamine | Formamide, DMF | Solvothermal (210 °C; 10 h) | 458 | 515 | 40.9 | [24] |
N | Tartaric acid, triammonium citrate | Ethanol | Solvothermal (180 °C; 8 h) | 415 | 521 | 41.2 | [17] |
N | Diammonium hydrogen citrate, urea | - | Heating in an open system (180 °C; 1 h) | 420 | 537 | 46.4 | [71] |
N | Phloroglucinol | 1,2- pentanediol | Ultrasonication/ Heating in an open system (180 °C; 6 h) | independent | 511 | 48 | [72] |
N | 3,5-diaminobenzoic acid, phosphoric acid | Ethanol | Solvothermal (200 °C; 8 h) | 460 | 500 | 69.2 | [45] |
- | Phloroglucinol | Ethanol | Solvothermal (200 °C; 24 h) | 500 | 507 | 72 | [63] |
N | Citric acid, 2,3-diaminonaphthalene | Ethanol | Solvothermal (200 °C; 9 h) | 365 | 513 | 73 | [12] |
Si, N | Erythrosin B, nitrogen, (3-Aminopropyl) trimethoxysilane | Water | Hydrothermal (180 °C; 6 h) | 490 | 516 | 93.8 | [73] |
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
- | Bougainvillea leaves | Ethanol | Hydrothermal (180 °C; 4 h) | 430–490 | 670 | - | [74] |
N, Si, P | Green tea powder | Ethanol | Ultrasonication (25 °C; 1 h) | 380 | 684 | 7.58 | [75] |
Gray synthesis | |||||||
N | Aminosalicylic acid | Ethanol | Solvothermal (200 °C; 18 h) | 510 | 610 | 5.8 | [54] |
N | Titanyl-phthalocyanine | Ethanol | Ultrasonication/ Solvothermal (180 °C; 6 h) | 340 | 674 | 7.54 | [76] |
N | N-Phenyl- o-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 530 | 595 | 10.5 | [77] |
N, Cl | P-phenylenediamine, phosphorus acid | Water | Hydrothermal (180 °C; 24 h) | 530 | 620 | 11.2 | [78] |
N | Citric acid, 1,5-diaminonaphthalene | Concentrated sulfuric acid | Solvothermal (200 °C; 1 h) | independent | 604 | 12 | [12] |
- | Citric acid, neutral red | Deionized water | Hydrothermal (180 °C; 4 h) | 530 | 632 | 12.1 | [79] |
N | Citric acid, urea | DMF | Solvothermal (160–200 °C; 12 h) | 550 | 600–630 | 12.9 | [28] |
N, S | Glutathione, folic acid | Formamide | Solvothermal (160 °C; 8 h) | 420 | 683 | 14.0 | [80] |
N | O-phenylenediamine | Deionized water, HCl | Microwave heating (180 °C; 10 min; 1000 W) | independent | 600 | 14.5 | [81] |
N | Citric acid, urea | DMF | Solvothermal (160 °C; 8 h) | 365 | 634 | 22 | [44] |
N | Citric acid | Formamide | Microwave heating (160 °C; 1 h and 120 °C; 1 h; 400 W) | 540 | 640 | 22.9 | [82] |
N | 3,4-diaminobenzoic acid | Ethanol | Solvothermal (200 °C; 12 h) | 580 | 600 | 24.8 | [45] |
N | P-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 510 | 604 | 26.1 | [15] |
N | Methylene violet, citric acid | Distilled Water | Ultrasonication/ hydrothermal (180 °C; 8 h) | independent | 596 | 26.24 | [83] |
N | O-Phenylenediamine | Deionized water, HNO3 | Hydrothermal; (200 °C; 10 h) | 540 | 630 | 31.54 | [30] |
N, S | Congo red, p-phenylenediamine | DMSO | Hydrothermal (200 °C; 8 h) | 480 | 630 | 39.9 | [35] |
N | L-glutamic acid, o-phenylenediamine | Water, H2SO4 | Solvothermal (210 °C; 10 h) | 634 | 715 | 43.2 | [24] |
N | Citric acid, urea | Formic acid | Solvothermal (160 °C; 4 h) | 510 | 640 | 43.4 | [84] |
N | O-phenylenediamine, terephthalic acid | Ethanol | Solvothermal (180 °C; 12 h) | 600 | 665 | 47.0 | [16] |
N, S | Tobias acid, o-phenylenediamine | Sulfuric acid | Solvothermal (210 °C; 10 h) | 600 | 625, 675 | 50.8 | [43] |
N | Citric acid, Nile blue A | Ethanol, Water | Sonication (10 min)/Solvothermal (200 °C; 5 h) | 540 | 640 | 51 | [62] |
N | Citric acid, ethylenediamine | Formamide | Solvothermal (180 °C; 4 h) | 560 | 627 | 53 | [27] |
- | Dihydroxynaphthalene, KIO4 | Ethanol | Solvothermal (180 °C; 1 h) | 540 | 628 | 53 | [13] |
- | Phloroglucinol | Ethanol, H2SO4 | Solvothermal (200 °C; 5 h) /refluxing | 580 | 598 | 54 | [63] |
N, Si | Citric acid anhydrous | Acetone, N-(β-aminoethyl)-γ-aminopropyl methyldimethoxysilane | Pyrolysis (150 °C; 5 min) | 580 | 640 | 55.05 (in water), 9.6 (solid) | [85] |
N | Resazurin, urea | Ethanol | Ultrasonication/ Solvothermal (200 °C; 8 h) | 592 | 608 | 58.9 | [86] |
- | Resorcinol | Ethanol | Solvothermal (200 °C; 7 h) | 365 | 610 | 72 | [87] |
N | Mulberry leaves | Ethanol, Dichloromethane | Solvothermal (150 °C; 4 h) | 406 | 676 | 72.6 | [65] |
N | N,N-dimethyl-, N,N-diethyl-, N,N-dipropyl-p-PD | DMF | Solvothermal (200 °C; 12 h) | 540–560 | 637–645 | 77.9–86 | [88] |
N | 3,4,9,10-Tetranitroperylene (NaOH treated) | Ethanol | Solvothermal (200 °C; 12 h) | 560 | 610 | 80 | [89] |
N | Tris(4-aminophenyl)amine(tert-butyl hydroperoxide) | Ethanol | Solvothermal (130 °C; 2 h) | 570 | 615 | 80.77 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucka, K.; Socha, R.P.; Wojnicki, M. Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics 2024, 13, 4481. https://doi.org/10.3390/electronics13224481
Bucka K, Socha RP, Wojnicki M. Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics. 2024; 13(22):4481. https://doi.org/10.3390/electronics13224481
Chicago/Turabian StyleBucka, Katarzyna, Robert P. Socha, and Marek Wojnicki. 2024. "Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature" Electronics 13, no. 22: 4481. https://doi.org/10.3390/electronics13224481
APA StyleBucka, K., Socha, R. P., & Wojnicki, M. (2024). Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics, 13(22), 4481. https://doi.org/10.3390/electronics13224481