FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading
Abstract
:1. Introduction
- We propose FuturesNet, which integrates the InceptionTime module, long short-term memory with skip connections, and a linear auto-regressive module to capture both short-term and long-term temporal dependencies in domestic futures data;
- Extensive empirical results show that our proposed FuturesNet significantly outperforms other strong baselines in capturing domestic futures trends, and we identify some interesting patterns that may inspire future research;
- To the best of our knowledge, we are the first to apply deep learning methods to capture domestic futures trend patterns.
2. Related Work
2.1. Futures Trading with Traditional Methods
2.2. Futures Trading with Deep Learning-Based Methods
3. Preliminaries
3.1. Input Data Format
3.2. Futures Trend Labeling
4. Our Method
4.1. Overall Framework
4.1.1. InceptionTime Module
4.1.2. Long Short-Term Memory Module
4.1.3. Auto-Regressive Module
4.2. Objective Function
5. Experiments
5.1. Experimental Settings
5.1.1. Evaluation Metrics
5.1.2. Hyperparameter Settings
5.1.3. Statistics of High-Frequency Futures Data
5.2. Futures Data Analysis
5.2.1. Visualization of Domestic Futures Data
5.2.2. Futures Price Spread
5.2.3. Futures Data Trend Patterns
5.3. Main Results
5.4. Hyperparameter Analysis
5.5. Ablation Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Sun, T.; Liu, B.; Cao, Y.; Wang, D. Financial markets prediction with deep learning. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 97–104. [Google Scholar]
- Nölke, A.; Ten Brink, T.; Claar, S.; May, C. Domestic structures, foreign economic policies and global economic order: Implications from the rise of large emerging economies. Eur. J. Int. Relat. 2015, 21, 538–567. [Google Scholar] [CrossRef]
- Tu, Z.; Song, M.; Zhang, L. Emerging impact of Chinese commodity futures market on domestic and global economy. China World Econ. 2013, 21, 79–99. [Google Scholar] [CrossRef]
- Pan, Q.; Yang, P.; Zhang, J. BayesTSF: Measuring Uncertainty Estimation in Industrial Time Series Forecasting from a Bayesian Perspective. In Proceedings of the International Conference on Intelligent Computing; Springer: Tianjin, China, 2024; pp. 81–93. [Google Scholar]
- Peck, A.E. The economic role of traditional commodity futures markets. In Futures Markets: Their Economic Role; American Enterprise Institute for Public Policy Research: Washington, DC, USA, 1985; pp. 1–81. [Google Scholar]
- Stock, J.H.; Watson, M.W. Vector autoregressions. J. Econ. Perspect. 2001, 15, 101–115. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D.S.; Shumway, R.H.; Stoffer, D.S. ARIMA models. In Time Series Analysis and Its Applications: With R Examples; Springer: Cham, Switzerland, 2017; pp. 75–163. [Google Scholar]
- Alberg, D.; Shalit, H.; Yosef, R. Estimating stock market volatility using asymmetric GARCH models. Appl. Financ. Econ. 2008, 18, 1201–1208. [Google Scholar] [CrossRef]
- Mikosch, T.; Strica, C. Changes of structure in financial time series and the GARCH model. REVSTAT-Stat. J. 2004, 2, 41–73. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Pan, Q.; Hu, W.; Chen, N. Two Birds with One Stone: Series Saliency for Accurate and Interpretable Multivariate Time Series Forecasting. In Proceedings of the IJCAI, Montreal, QC, Canada, 19–27 August 2021; pp. 2884–2891. [Google Scholar]
- Saud, A.S.; Shakya, S. Analysis of l2 regularization hyper parameter for stock price prediction. J. Inst. Sci. Technol. 2021, 26, 83–88. [Google Scholar] [CrossRef]
- Grossberg, S. Recurrent neural networks. Scholarpedia 2013, 8, 1888. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Mehtab, S.; Sen, J. Analysis and forecasting of financial time series using CNN and LSTM-based deep learning models. In Proceedings of the Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2021; Springer: Singapore, 2022; pp. 405–423. [Google Scholar]
- Jiang, Z.; Liang, J. Cryptocurrency portfolio management with deep reinforcement learning. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 905–913. [Google Scholar]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Xu, C.; Li, J.; Feng, B.; Lu, B. A financial time-series prediction model based on multiplex attention and linear transformer structure. Appl. Sci. 2023, 13, 5175. [Google Scholar] [CrossRef]
- Olorunnimbe, K.; Viktor, H. Ensemble of temporal Transformers for financial time series. J. Intell. Inf. Syst. 2024, 62, 1087–1111. [Google Scholar] [CrossRef]
- Huo, L.; Xie, Y.; Li, J. An Innovative Deep Learning Futures Price Prediction Method with Fast and Strong Generalization and High-Accuracy Research. Appl. Sci. 2024, 14, 5602. [Google Scholar] [CrossRef]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Tsay, R.S. Analysis of Financial Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Fama, E.F.; French, K.R. Permanent and temporary components of stock prices. J. Political Econ. 1988, 96, 246–273. [Google Scholar] [CrossRef]
- Tay, F.E.; Cao, L. Application of support vector machines in financial time series forecasting. Omega 2001, 29, 309–317. [Google Scholar] [CrossRef]
- Nelson, D.M.; Pereira, A.C.; De Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In Proceedings of the 2017 International joint conference on neural networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1419–1426. [Google Scholar]
- Chen, J.F.; Chen, W.L.; Huang, C.P.; Huang, S.H.; Chen, A.P. Financial time-series data analysis using deep convolutional neural networks. In Proceedings of the 2016 7th International conference on cloud computing and big data (CCBD), Macau, China, 16–18 November 2016; pp. 87–92. [Google Scholar]
- Meng, T.L.; Khushi, M. Reinforcement learning in financial markets. Data 2019, 4, 110. [Google Scholar] [CrossRef]
- Sirignano, J.A. Deep learning for limit order books. Quant. Financ. 2019, 19, 549–570. [Google Scholar] [CrossRef]
- Turner, C.R.; Fuggetta, A.; Lavazza, L.; Wolf, A.L. A conceptual basis for feature engineering. J. Syst. Softw. 1999, 49, 3–15. [Google Scholar] [CrossRef]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Besanko, D.; Braeutigam, R. Microeconomics; John Wiley and Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef]
- Cowell, F.A. Microeconomics: Principles and Analysis; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Zhang, M.Y.; Russell, J.R.; Tsay, R.S. A nonlinear autoregressive conditional duration model with applications to financial transaction data. J. Econom. 2001, 104, 179–207. [Google Scholar] [CrossRef]
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Pan, Q.; Guo, N.; Qingge, L.; Zhang, J.; Yang, P. PMT-IQA: Progressive multi-task learning for blind image quality assessment. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence; Springer: Singapore, 2023; pp. 153–164. [Google Scholar]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Sun, T.; Wang, J.; Ni, J.; Cao, Y.; Liu, B. Predicting futures market movement using deep neural networks. In Proceedings of the 2019 18Th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 118–125. [Google Scholar]
- Zhang, Z.; Zohren, S.; Roberts, S. Deeplob: Deep convolutional neural networks for limit order books. IEEE Trans. Signal Process. 2019, 67, 3001–3012. [Google Scholar] [CrossRef]
- Sharpe, W.F. The sharpe ratio. Streetwise-Best J. Portf. Manag. 1998, 3, 169–185. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Geboers, H.; Depaire, B.; Annaert, J. A review on drawdown risk measures and their implications for risk management. J. Econ. Surv. 2023, 37, 865–889. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Admati, A.R.; Pfleiderer, P. Selling and trading on information in financial markets. Am. Econ. Rev. 1988, 78, 96–103. [Google Scholar]
Id | Metric | Mean | Median | Deviation |
---|---|---|---|---|
50 | Open price | 3117.0 | 3176.7 | 270.3 |
Close price | 3117.1 | 3176.5 | 270.3 | |
Max price | 3117.9 | 3177.8 | 270.4 | |
Min price | 3116.2 | 3175.4 | 270.2 | |
Volume | 154,207.2 | 116,577.5 | 144,871.1 | |
300 | Open price | 4427.0 | 4583.5 | 493.2 |
Close price | 4427.0 | 4583.6 | 493.2 | |
Max price | 4428.1 | 4584.7 | 493.4 | |
Min price | 4425.9 | 4582.1 | 493.0 | |
Volume | 652,119.9 | 504,496.5 | 555,812.6 | |
500 | Open price | 5923.6 | 5861.6 | 536.0 |
Close price | 5923.6 | 5861.7 | 536.0 | |
Max price | 5925.2 | 5862.9 | 536.2 | |
Min price | 5921.9 | 5860.2 | 535.9 | |
Volume | 606,487.7 | 464,245.5 | 521,443.8 |
Futures | Method | CNN | Transformer | GRU | LSTNet | Ours |
---|---|---|---|---|---|---|
2020 | 0.19 | 0.19 | 0.48 | 0.39 | 0.54 | |
50 | 2021 | 0.31 | 0.33 | 0.32 | 0.29 | 0.41 |
2022 | 0.32 | 0.31 | 0.39 | 0.29 | 0.51 | |
2020 | 0.19 | 0.21 | 0.49 | 0.48 | 0.54 | |
300 | 2021 | 0.37 | 0.36 | 0.32 | 0.29 | 0.39 |
2022 | 0.31 | 0.29 | 0.35 | 0.32 | 0.42 | |
2020 | 0.25 | 0.34 | 0.31 | 0.28 | 0.39 | |
500 | 2021 | 0.34 | 0.25 | 0.36 | 0.25 | 0.43 |
2022 | 0.32 | 0.41 | 0.31 | 0.25 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Q.; Sun, S.; Yang, P.; Zhang, J. FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading. Electronics 2024, 13, 4482. https://doi.org/10.3390/electronics13224482
Pan Q, Sun S, Yang P, Zhang J. FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading. Electronics. 2024; 13(22):4482. https://doi.org/10.3390/electronics13224482
Chicago/Turabian StylePan, Qingyi, Suyu Sun, Pei Yang, and Jingyi Zhang. 2024. "FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading" Electronics 13, no. 22: 4482. https://doi.org/10.3390/electronics13224482
APA StylePan, Q., Sun, S., Yang, P., & Zhang, J. (2024). FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading. Electronics, 13(22), 4482. https://doi.org/10.3390/electronics13224482