A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide
Abstract
:1. Introduction
2. Methods and Models
2.1. Model of the SWSs
2.2. Whole Transmission and Interaction Model of the MSDCW-TWT
2.3. Materials of Models and Methods of Research
3. Results
3.1. High-Frequency Characteristics of the SWSs
3.2. Transmission Parameters of the TWTs
3.3. Beam–Wave Interaction of the TWTs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C. Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. J. Am. Chem. Soc. 2021, 143, 4311–4318. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Qi, C.; Zhu, Z.; Wang, C.; Song, B.; Chang, C. Terahertz Wave Accelerates DNA Unwinding: A Molecular Dynamics Simulation Study. J. Phys. Chem. Lett. 2020, 11, 7002–7008. [Google Scholar] [CrossRef] [PubMed]
- Lyu, N.; Zuo, J.; Zhao, Y.; Zhang, C. Terahertz Synthetic Aperture Imaging with a Light Field Imaging System. Electronics 2020, 9, 830. [Google Scholar] [CrossRef]
- Paoloni, C.; Gamzina, D.; Letizia, R.; Zheng, Y.; Luhmann, N.C., Jr. Millimeter wave traveling wave tubes for the 21st Century. J. Electromagn. Waves Appl. 2021, 35, 567–603. [Google Scholar] [CrossRef]
- Zheng, Y.; Qiu, S.; Griffin, B.; Kowalczyk, R.; Luhmann, N.C., Jr.; Gamzina, D. Compact E-Band Sheet Beam Folded Waveguide Traveling Wave Tube for High Data Rate Communication. IEEE Trans. Electron Devices 2023, 70, 2508–2513. [Google Scholar] [CrossRef]
- Basu, B.N.; Datta, S.K. Microwave tubes and applications. J. Electromagn. Waves Appl. 2017, 31, 1771–1774. [Google Scholar] [CrossRef]
- Minenna, D.F.G.; André, F.; Elskens, Y.; Auboin, J.F.; Doveil, F.; Puech, J.; Duverdier, É. The traveling-wave tube in the history of telecommunication. Eur. Phys. J. H 2019, 44, 1–36. [Google Scholar] [CrossRef]
- Hu, P.; Lei, W.; Jiang, Y.; Huang, Y.; Song, R.; Chen, H.; Dong, Y. Demonstration of a Watt-Level Traveling Wave Tube Amplifier Operating Above 0.3 THz. IEEE Electron Device Lett. 2019, 40, 973–976. [Google Scholar] [CrossRef]
- Cao, L.; He, J.; Huang, M.; Zhang, X.; Zhao, J.; Zhai, D. Design and Performance of a High-Efficiency 120-W Q-Band Space Helix TWT. IEEE Trans. Plasma Sci. 2020, 48, 658–664. [Google Scholar] [CrossRef]
- Wei, W.; Zhong, H.; Wei, Y.; Zhang, L.; Wang, S.; Ge, X.; Dai, R.; Qiu, Z.; Lu, Z.; Wang, W. Investigation of Half Rectangular-Ring Helix Slow Wave Structure for W-Band Wide Bandwidth High-Efficiency TWTs. IEEE Trans. Plasma Sci. 2022, 50, 4576–4581. [Google Scholar] [CrossRef]
- Wu, G.; Wei, Y.; Xu, Z.; Shi, J. Theory and Hot Test of High-Power Broadband Helix Traveling-Wave Tube Based on a Double-Graded Radius and Pitch Circuit. IEEE Electron Device Lett. 2021, 42, 1868–1870. [Google Scholar] [CrossRef]
- Sumathy, M.; Gupta, S.K.; Kumar, B.; Venkateswarlu, Y.; Murthy, C.N.; Santra, M.; Uma Maheswara Reddy, S. Cold Circuit Analysis of a Coupled-Cavity Slow Wave Structure for Mm-Wave TWT. IEEE Trans. Plasma Sci. 2020, 48, 3024–3029. [Google Scholar] [CrossRef]
- Mistretta, A.; Martorana, R.; Bisconti, D.; Muratore, A. Development of a 1.5-kW Average Output Power Coupled-Cavity TWT With a 10% Bandwidth Operating in X-Band. IEEE Trans. Electron Devices 2018, 65, 2252–2256. [Google Scholar] [CrossRef]
- Jiang, Y.; Lei, W.; Hu, P.; Song, R.; Ma, G.; Chen, H.; Jin, X. Demonstration of a 220-GHz Continuous Wave Traveling Wave Tube. IEEE Trans. Electron Devices 2021, 68, 3051–3055. [Google Scholar] [CrossRef]
- Shu, G.; Deng, J.; Xie, L.; Liu, G.; Zhang, L.; Wang, J.; Qian, Z.; He, W. Design, Fabrication, and Cold Test of a High Frequency System for an H-Band Sheet Beam Travelling Wave Tube. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 292–301. [Google Scholar] [CrossRef]
- Lai, J.; Gong, Y.; Xu, X.; Wei, Y.; Duan, Z.; Wang, W.; Feng, J. W-Band 1-kW Staggered Double-Vane Traveling-Wave Tube. IEEE Trans. Electron Devices 2012, 59, 496–503. [Google Scholar] [CrossRef]
- Shu, G.; Wang, J.; Liu, G.; Luo, Y.; Wang, S. An Improved Slow-Wave Structure for the Sheet-Beam Traveling-Wave Tube. IEEE Trans. Electron Devices 2016, 63, 2089–2096. [Google Scholar] [CrossRef]
- Lu, Z.; Wen, R.; Su, Z.; Ge, W.; Wang, Z.; Gong, H.; Gong, Y. Novel Helical Groove Rectangular Waveguide Slow Wave Structure for 0.2 THz Traveling Wave Tube. IEEE Electron Device Lett. 2019, 40, 1526–1529. [Google Scholar] [CrossRef]
- Babaeihaselghobi, A.; Akram, M.N.; Ghavifekr, H.B.; Billa, L.R. A Novel Chevron-Shape Double-Staggered Grating Waveguide Slow Wave Structure for Terahertz Traveling Wave Tubes. IEEE Trans. Electron Devices 2020, 67, 3781–3787. [Google Scholar] [CrossRef]
- Lu, Z.; Gong, Y.; Wei, Y.; Wang, W. Study of the double rectangular waveguide grating slow-wave structure. Chin. Phys. 2006, 15, 2661–2668. [Google Scholar] [CrossRef]
- Lu, Z.; Ge, W.; Wen, R.; Wang, Z.; Gong, H.; Wei, Y.; Gong, Y. 0.2-THz Traveling Wave Tube Based on the Sheet Beam and a Novel Staggered Double Corrugated Waveguide. IEEE Trans. Plasma Sci. 2020, 48, 3229–3237. [Google Scholar] [CrossRef]
- Karetnikova, T.A.; Rozhnev, A.G.; Ryskin, N.M.; Fedotov, A.E.; Mishakin, S.V.; Ginzburg, N.S. Gain Analysis of a 0.2-THz Traveling-Wave Tube with Sheet Electron Beam and Staggered Grating Slow Wave Structure. IEEE Trans. Electron Devices 2018, 65, 2129–2134. [Google Scholar] [CrossRef]
- Shu, G.; Liu, G.; Qian, Z.; He, W. Design, Microfabrication, and Characterization of a Subterahertz-Band High-Order Overmoded Double-Staggered Grating Waveguide for Multiple-Sheet Electron Beam Devices. IEEE Trans. Electron Devices 2021, 68, 3021–3027. [Google Scholar] [CrossRef]
- Baig, A.; Gamzina, D.; Kimura, T.; Atkinson, J.; Domier, C.; Popovic, B.; Himes, L.; Barchfeld, R.; Field, M.; Luhmann, N.C., Jr. Performance of a Nano-CNC Machined 220-GHz Traveling Wave Tube Amplifier. IEEE Trans. Electron Devices 2017, 64, 2390–2397. [Google Scholar] [CrossRef]
- Xie, W.; Wang, Z.; He, F.; Luo, J.; Zhao, D.; Liu, Q. Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier. Phys. Plasmas. 2014, 21, 043103. [Google Scholar] [CrossRef]
- Xie, W.; Wang, Z.-C.; Luo, J.; Liu, Q. Theory and Simulation of Arbitrarily Shaped Groove Staggered Double Grating Array Waveguide. IEEE Trans. Electron Devices 2014, 61, 1707–1714. [Google Scholar] [CrossRef]
- Lu, Z.; Ding, K.; Wen, R.; Ge, W.; Zhu, M.; Wang, Z.; Gong, H.; Gong, Y. Novel Double Tunnel Staggered Grating Slow Wave Structure for 0.2 THz Traveling Wave Tube. IEEE Electron Device Lett. 2020, 41, 284–287. [Google Scholar] [CrossRef]
- Schuenemann, K.; Serebryannikov, A.E.; Sosnytskiy, S.V.; Vavriv, D.M. Optimizing the spatial-harmonic millimeter-wave magnetron. Phys. Plasmas. 2003, 10, 2559–2565. [Google Scholar] [CrossRef]
- Piosczyk, B.; Arnold, A.; Dammertz, G.; Dumbrajs, O.; Kuntze, M.; Thumm, M.K. Coaxial cavity gyrotron—Recent experimental results. IEEE Trans. Plasma Sci. 2002, 30, 819–827. [Google Scholar] [CrossRef]
- Qin, M.; Luo, Y.; Yang, K.; Huang, Y.; Li, H. Numerical study and simulation of a 170 GHz megawatt-level corrugated coaxial-gyrotron. Vacuum 2014, 109, 34–42. [Google Scholar] [CrossRef]
- Titov, V.; Ploskih, A.; Ryskin, N. Study of Beam-Wave Interaction in a Sub-THz Traveling Wave Tube with a Converging Sheet Electron Beam Focused by a Uniform Magnetic Field. Electronics 2022, 11, 4208. [Google Scholar] [CrossRef]
- Deng, G.; Chen, P.; Yang, J.; Yin, Z.; Ruan, J. 0.22 THz two-stage cascaded staggered double-vane traveling-wave tube. J. Comput. Electron. 2016, 15, 634–638. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Y.; Guo, G.; Ding, C.; Wang, Y.; Jiang, X.; Zhao, G.; Xu, J.; Wang, W.; Gong, Y. A Ridge-Loaded Sine Waveguide for G-Band Traveling-Wave Tube. IEEE Trans. Plasma Sci. 2016, 44, 2832–2837. [Google Scholar] [CrossRef]
Parameter | Value (μm) | ||
---|---|---|---|
MSDCW-SWS | SDCW-SWS | SDG-SWS | |
Structure size | |||
p | 530 | 530 | 530 |
s | 100 | 100 | 80 |
h | 300 | 300 | 300 |
Wr | 20 | ||
Hg | 320 | ||
Sr | 120 | ||
d | 80 | 80 | |
c | 800 | 840 | |
Tunnel size | |||
b | 200 | 200 | 200 |
a | 790 | 790 | 790 |
Beam size | |||
r | 520 | 520 | 520 |
q | 140 | 140 | 140 |
Model | Number of Periods of Main SWSs | Frequency Range for S11 <−15 dB (GHz) | S21 |
---|---|---|---|
[19] | 10 | 194~238 | <−0.4 dB |
[20] | 20 | 180~230 | <−1 dB |
[28] | 37 | 180~240 | >−5 dB (188~255 GHz) |
MSDCW-TWT | 62 | 201~247 | <−3.4 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Yu, S. A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide. Electronics 2024, 13, 4483. https://doi.org/10.3390/electronics13224483
Ge W, Yu S. A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide. Electronics. 2024; 13(22):4483. https://doi.org/10.3390/electronics13224483
Chicago/Turabian StyleGe, Weihua, and Sheng Yu. 2024. "A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide" Electronics 13, no. 22: 4483. https://doi.org/10.3390/electronics13224483
APA StyleGe, W., & Yu, S. (2024). A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide. Electronics, 13(22), 4483. https://doi.org/10.3390/electronics13224483