Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm
Abstract
:1. Introduction
- Establish a Microgrid Model: An optimization model of the microgrid is established based on the total operating cost.
- Propose a Multi-Strategy Improved Honey Badger Algorithm (MIHBA): Update of Dynamic Density Factor in Exploration Phase: The dynamic density factor is updated in the exploration phase to facilitate the smooth transition of the search phase. Introduce the Spiral Factor: A spiral factor is introduced to enhance the searching ability of the algorithm. Introduce a Hunger Search Strategy: A hunger search strategy is introduced to explore the solution space in a larger range and reduce the possibility of falling into local optima.
- Benchmark Testing: Simulation and comparison tests are conducted using several benchmark functions to evaluate the performance of the algorithms.
- Solve the Microgrid Optimization Problem: The improved honey badger algorithm is used to solve the optimization scheduling model of the microgrid, verifying the effectiveness and superiority of the algorithm in solving the optimization scheduling problem.
2. Microgrid Optimal Scheduling Model
2.1. Photovoltaic Power Generation Model
2.2. Wind Power Generation System
2.3. Micro Gas Turbine Model
2.4. Fuel Cell Model
2.5. Battery Model
2.6. Objective Function for Daily Operating Cost
2.7. Constraints
2.7.1. Power Balance Constraint
2.7.2. Constraints on Power Purchase and Sale with the Grid
2.7.3. Constraints on Controllable Generation Unit Output
2.7.4. Micro Gas Turbine Ramp Constraint
2.7.5. Energy Storage Battery Constraints
3. The Principle and Improvement Measures of Honey Badger Algorithm
3.1. Honey Badger Algorithm
3.1.1. Population Initialization
3.1.2. Defining Odor Intensity
3.1.3. Updating Density Factor
3.1.4. Excavation Stage
3.1.5. Honey Harvesting Phase
3.2. Improved Honey Badger Algorithm
3.2.1. Population Initialization Based on Cooperative–Competitive Learning
3.2.2. Fixed Parameter Linear Decrease Strategy
3.2.3. Introducing Spiral Factor
3.2.4. Starvation Search Strategy
3.3. Implementation Process of the MIHBA Algorithm
4. Algorithm Performance Testing and Comparison
4.1. Selection of Test Functions
4.2. Parameter Settings and Test Environment
4.3. Analysis of Test Function Results
5. Microgrid Model Simulation Analysis
5.1. Basic Parameter Settings of Microgrid
5.2. Simulation Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y.; Peng, R. A review of optimization of microgrid operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Luan, H.; Dong, R.; Wang, X.; Liao, J.; Fang, S.; Gao, K. A Review of Optimization for System Reliability of Microgrid. Mathematics 2023, 11, 822. [Google Scholar] [CrossRef]
- Shezan, S.A.; Kamwa, I.; Ishraque, M.F.; Muyeen, S.; Hasan, K.N.; Saidur, R.; Rizvi, S.M.; Shafiullah, M.; Al-Sulaiman, F.A. Evaluation of different optimization techniques and control strategies of hybrid microgrid: A review. Energies 2023, 16, 1792. [Google Scholar] [CrossRef]
- Chaudhary, V.; Pandit, M.; Dubey, H.M. Renewable Energy Integrated Economic Dispatch Using Intelligent Techniques: An Overview. In Proceedings of the International Conference on Communication and Computational Technologies, Jaipur, India, 26–27 February 2022; pp. 493–506. [Google Scholar]
- Wei, H.; Wang, W.S.; Kao, X.X. A novel approach to hybrid dynamic environmental-economic dispatch of multi-energy complementary virtual power plant considering renewable energy generation uncertainty and demand response. Renew. Energy 2023, 219, 119406. [Google Scholar]
- Azeem, M.; Malik, T.N.; Muqeet, H.A.; Hussain, M.M.; Ali, A.; Khan, B.; Rehman, A.U. Combined economic emission dispatch in presence of renewable energy resources using CISSA in a smart grid environment. Electronics 2023, 12, 715. [Google Scholar] [CrossRef]
- Yan, N.; Ma, G.; Li, X.; Guerrero, J.M. Low-carbon economic dispatch method for integrated energy system considering seasonal carbon flow dynamic balance. IEEE Trans. Sustain. Energy 2022, 14, 576–586. [Google Scholar] [CrossRef]
- Abd El-Sattar, H.; Hassan, M.H.; Vera, D.; Jurado, F.; Kamel, S. Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm. Renew. Energy 2024, 227, 120480. [Google Scholar] [CrossRef]
- Roslan, M.; Hannan, M.; Ker, P.J.; Begum, R.; Mahlia, T.I.; Dong, Z. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction. Appl. Energy 2021, 292, 116883. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar]
- Li, W.; Wang, G.G.; Gandomi, A.H. A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar]
- Kumar, A.; Nadeem, M.; Banka, H. Nature inspired optimization algorithms: A comprehensive overview. Evol. Syst. 2023, 14, 141–156. [Google Scholar]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar]
- Yu, K.; Liang, J.; Qu, B.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [Google Scholar]
- Deng, W.; Xu, J.; Zhao, H. An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 2019, 7, 20281–20292. [Google Scholar]
- Ahmed, Z.H.; Yousefikhoshbakht, M. An improved tabu search algorithm for solving heterogeneous fixed fleet open vehicle routing problem with time windows. Alex. Eng. J. 2023, 64, 349–363. [Google Scholar]
- Deng, H.; Liu, L.; Fang, J.; Qu, B.; Huang, Q. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm. Math. Comput. Simul. 2023, 205, 794–817. [Google Scholar]
- Shishavan, S.T.; Gharehchopogh, F.S. An improved cuckoo search optimization algorithm with genetic algorithm for community detection in complex networks. Multimed. Tools Appl. 2022, 81, 25205–25231. [Google Scholar]
- Yıldız, B.S.; Kumar, S.; Panagant, N.; Mehta, P.; Sait, S.M.; Yildiz, A.R.; Pholdee, N.; Bureerat, S.; Mirjalili, S. A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems. Knowl.-Based Syst. 2023, 271, 110554. [Google Scholar]
- Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, Y.; Li, J. Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems. Expert Syst. Appl. 2024, 248, 123444. [Google Scholar] [CrossRef]
- He, Y.; Wang, M. An improved chaos sparrow search algorithm for UAV path planning. Sci. Rep. 2024, 14, 366. [Google Scholar] [CrossRef]
- Jia, H.; Lu, C. Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement. Knowl.-Based Syst. 2024, 286, 111402. [Google Scholar] [CrossRef]
- Hu, G.; Zhong, J.; Wei, G. SaCHBA_PDN: Modified honey badger algorithm with multi-strategy for UAV path planning. Expert Syst. Appl. 2023, 223, 119941. [Google Scholar] [CrossRef]
- Lei, W.; He, Q.; Yang, L.; Jiao, H. Solar photovoltaic cell parameter identification based on improved honey badger algorithm. Sustainability 2022, 14, 8897. [Google Scholar] [CrossRef]
- Nassef, A.M.; Houssein, E.H.; Helmy, B.E.d.; Rezk, H. Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization. Energy 2022, 254, 124363. [Google Scholar] [CrossRef]
- Han, E.; Ghadimi, N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm. Sustain. Energy Technol. Assess. 2022, 52, 102005. [Google Scholar] [CrossRef]
- Deng, B. An improved honey badger algorithm by genetic algorithm and levy flight distribution for solving airline crew rostering problem. IEEE Access 2022, 10, 108075–108088. [Google Scholar] [CrossRef]
- Dong, H.; Lin, G. Robust optimization design of fresh closed-loop supply chain network based on improved honey badger algorithm. Appl. Res. Comput. 2022, 39, 3020–3025. [Google Scholar]
- Chai, Y.; Wang, R.; Ren, S. Improved honey badger algorithm for dual population collaborative evolution. Appl. Res. Comput. 2024, 41, 736–745+771. [Google Scholar]
- Xiang, H.; Li, H.; Fu, X.; Su, X. Improved Honey Badger Algorithm Based on Multi-Strategy and Its Applications. Comput. Eng. 2023, 49, 78–87. [Google Scholar]
- Hemeida, A.M.; Omer, A.S.; Bahaa-Eldin, A.M.; Alkhalaf, S.; Ahmed, M.; Senjyu, T.; El-Saady, G. Multi-objective multi-verse optimization of renewable energy sources-based micro-grid system: Real case. Ain Shams Eng. J. 2022, 13, 101543. [Google Scholar] [CrossRef]
- Wang, H. Study on Optimal Dispatch of Microgrid Considering the Uncertainty of Source and Load Side. Ph.D. Thesis, Anhui University of Science and Technology, Huainan, China, 2023. [Google Scholar]
- He, S.; Liu, T. Research on optimized scheduling of combined cooling heating and power microgrid based on improved butterfly algorithm. Electr. Eng. 2021, 22, 14–19+68. [Google Scholar]
- Raghav, L.P.; Kumar, R.S.; Raju, D.K.; Singh, A.R. Analytic hierarchy process (AHP)–swarm intelligence based flexible demand response management of grid-connected microgrid. Appl. Energy 2022, 306, 118058. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, F.; Liang, J.; Yun, Z.; Zhang, X. Dynamic Scheduling of CCHP Type of Microgrid Considering Additional Opportunity Income. Autom. Electr. Power Syst. 2015, 39, 8–15. [Google Scholar]
- Wang, Y.; Tang, L.; Yang, Y.; Sun, W.; Zhao, H. A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties. Energy 2020, 198, 117273. [Google Scholar] [CrossRef]
- Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.; Swanson, H.E. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [Google Scholar] [CrossRef]
- Goldanloo, M.J.; Gharehchopogh, F.S. A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. J. Supercomput. 2022, 78, 3998–4031. [Google Scholar] [CrossRef]
- Tang, A.; Zhou, H.; Han, T.; Xie, L. A modified manta ray foraging optimization for global optimization problems. IEEE Access 2021, 9, 128702–128721. [Google Scholar]
- Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nat. Comput. 2005, 341–357. Available online: https://www.researchgate.net/publication/235710019_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2005_Special_Session_on_Real-Parameter_Optimization (accessed on 8 October 2024).
- Shuai, H.; Fang, J.; Ai, X.; Tang, Y.; Wen, J.; He, H. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Trans. Smart Grid 2018, 10, 2440–2452. [Google Scholar] [CrossRef]
Optimization Algorithm | Parameters |
---|---|
GA | |
PSO | |
WOA | |
GWO | |
NGO | |
HBA | |
MIHBA |
Function | Dimension | Metric | GA | PSO | WOA | GWO | NGO | HBA | MIHBA |
---|---|---|---|---|---|---|---|---|---|
F1 | 10 | Best | 7.65 × 10 | 2.09 × 10 | 2.32 × 10 | 4.01 × 10 | 1.67 × 10 | 0.00 | 0.00 |
Mean | 2.93 × 10 | 5.71 × 10 | 1.34 × 10 | 8.84 × 10 | 1.65 × 10 | 0.00 | 0.00 | ||
Std | 1.38 × 10 | 3.08 × 10 | 0.00 | 1.93 × 10 | 2.82 × 10 | 0.00 | 0.00 | ||
30 | Best | 5.23 × 10 | 1.14 × 10 | 4.53 × 10 | 1.88 × 10 | 1.09 × 10 | 1.83 × 10 | 0.00 | |
Mean | 8.23 × 10 | 1.85 × 10 | 5.33 × 10 | 8.70 × 10 | 7.61 × 10 | 3.13 × 10 | 0.00 | ||
Std | 3.64 × 10 | 6.51 × 10 | 0.00 | 1.82 × 10 | 1.17 × 10 | 4.3 × 10 | 0.00 | ||
100 | Best | 1.30 × 10 | 1.32 × 10 | 1.35 × 10 | 2.75 × 10 | 4.51 × 10 | 5.62 × 10 | 0.00 | |
Mean | 1.73 × 10 | 1.51 × 10 | 5.49 × 10 | 2.77 × 10 | 6.74 × 10 | 1.07 × 10 | 0.00 | ||
Std | 3.17 × 10 | 1.29 | 0.00 | 3.34 × 10 | 1.44 × 10 | 0.00 | 0.00 | ||
F2 | 10 | Best | 9.55 × 10 | 6.55 × 10 | 3.71 × 10 | 1.08 × 10-82 | 3.54 × 10 | 4.75 × 10 | 0.00 |
Mean | 2.14 × 10 | 9.61 × 10 | 1.18 × 10 | 2.23 × 10 | 1.99 × 10 | 6.46 × 10 | 0.00 | ||
Std | 8.18 × 10 | 2.83 × 10 | 1.76 × 10 | 4.41 × 10 | 3.11 × 10 | 1.07 × 10 | 0.00 | ||
30 | Best | 1.18 × 10 | 1.66 | 3.77 × 10 | 1.50 × 10 | 1.34 × 10 | 9.83 × 10 | 0.00 | |
Mean | 1.90 × 10 | 2.51 | 1.50 × 10 | 5.84 × 10 | 6.64 × 10 | 1.25 × 10 | 0.00 | ||
Std | 8.98 × 10 | 8.22 × 10 | 2.69 × 10 | 6.67 × 10 | 4.20 × 10 | 2.23 × 10 | 0.00 | ||
100 | Best | 4.61 × 10 | 3.52 × 10 | 1.17 × 10 | 5.52 × 10 | 2.88 × 10 | 6.06 × 10 | 2.20 × 10 | |
Mean | 5.75 × 10 | 4.36 × 10 | 1.38 × 10 | 1.07 × 10 | 4.10 × 10 | 2.90 × 10 | 1.45 × 10 | ||
Std | 7.47 | 1.02 × 10 | 2.75 × 10 | 6.11 × 10 | 7.37 × 10 | 6.07 × 10 | 1.36 × 10 | ||
F3 | 10 | Best | 1.06 × 10 | 3.44 × 10 | 1.51 × 10 | 8.34 × 10 | 5.21 × 10 | 7.00 × 10 | 0.00 |
Mean | 1.12 × 10 | 7.02 × 10 | 2.79 | 7.01 × 10-67 | 1.09 × 10 | 3.41 × 10 | 0.00 | ||
Std | 1.31 × 10 | 4.04 × 10 | 6.06 | 1.57 × 10-66 | 1.28 × 10 | 7.63 × 10 | 0.00 | ||
30 | Best | 1.22 × 10 | 1.20 × 10 | 4.88 × 10 | 1.42 × 10 | 9.75 × 10 | 6.39 × 10 | 0.00 | |
Mean | 1.49 × 10 | 1.40 × 10 | 1.22 × 10 | 2.35 × 10 | 1.86 × 10 | 1.67 × 10 | 0.00 | ||
Std | 2.69 × 10 | 2.35 | 7.14 × 10 | 3.13 × 10 | 3.06 × 10 | 3.30 × 10 | 0.00 | ||
100 | Best | 1.58 × 10 | 3.56 × 10 | 6.97 × 10 | 1.71 × 10 | 2.02 × 10 | 3.76 × 10 | 0.00 | |
Mean | 2.08 × 10 | 4.82 × 10 | 7.69 × 10 | 5.38 × 10 | 2.41 × 10 | 2.87 × 10 | 0.00 | ||
Std | 3.35 × 10 | 8.91 × 10 | 6.68 × 10 | 7.36 × 10 | 5.20 × 10 | 0.00 | 0.00 | ||
F4 | 10 | Best | 4.25 × 10 | 1.84 × 10 | 1.02 × 10 | 3.92 × 10 | 1.55 × 10 | 2.72 × 10 | 0.00 |
Mean | 1.04 × 10 | 2.94 × 10 | 5.83 × 10 | 7.89 × 10 | 3.76 × 10 | 5.56 × 10 | 0.00 | ||
Std | 5.44 × 10 | 1.40 × 10 | 1.28 × 10 | 1.57 × 10 | 5.49 × 10 | 1.24 × 10 | 0.00 | ||
30 | Best | 1.37 × 10 | 5.36 × 10 | 7.61 × 10 | 8.02 × 10 | 2.00 × 10 | 4.95 × 10 | 0.00 | |
Mean | 1.81 × 10 | 1.13 | 4.16 × 10 | 2.42 × 10 | 7.41 × 10 | 3.00 × 10 | 0.00 | ||
Std | 3.31 | 6.11 × 10 | 3.09 × 10 | 3.27 × 10 | 6.00 × 10 | 6.22 × 10 | 0.00 | ||
100 | Best | 6.64 × 10 | 7.67 | 5.80 | 1.30 × 10 | 3.92 × 10 | 1.27 × 10 | 0.00 | |
Mean | 7.49 × 10 | 9.28 | 6.33 × 10 | 5.67 × 10 | 8.97 × 10 | 1.13 × 10 | 0.00 | ||
Std | 6.48 | 1.27 | 3.82 × 10 | 6.40 × 10 | 6.46 × 10 | 2.42 × 10 | 0.00 | ||
F5 | 10 | Best | 3.16 × 10 | 8.92 × 10 | 1.81 × 10 | 4.46 × 10 | 4.089 × 10 | 1.46 × 10 | 7.80 × 10 |
Mean | 4.22 × 10 | 2.83 × 10 | 1.90 × 10 | 1.45 × 10 | 1.93 × 10 | 1.15 × 10 | 2.19 × 10 | ||
Std | 1.14 × 10 | 1.27 × 10 | 1.72 × 10 | 1.15 × 10 | 1.23 × 10 | 1.05 × 10 | 1.32 × 10 | ||
30 | Best | 1.45 × 10 | 1.14 × 10 | 9.46 × 10 | 6.45 × 10 | 8.19 × 10 | 1.38 × 10 | 2.45 × 10 | |
Mean | 2.03 × 10 | 4.68 × 10 | 1.76 × 10 | 3.82 × 10 | 2.02 × 10 | 1.20 × 10 | 7.82 × 10 | ||
Std | 4.97 × 10 | 2.86 × 10 | 3.17 × 10 | 2.69 × 10 | 1.06 × 10 | 1.22 × 10 | 4.47 × 10 | ||
100 | Best | 1.43 × 10 | 1.59 × 10 | 1.86 × 10 | 1.20 × 10 | 2.45 × 10 | 2.98 × 10 | 3.31 × 10 | |
Mean | 2.38 × 10 | 2.38 × 10 | 9.95 × 10 | 1.73 × 10 | 3.42 × 10 | 1.71 × 10 | 3.08 × 10 | ||
Std | 1.07 × 10 | 4.18 × 10 | 7.18 × 10 | 4.98 × 10 | 8.59 × 10 | 1.30 × 10 | 2.74 × 10 | ||
F6 | 10 | Best | 2.82 × 10 | 4.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mean | 2.46 × 10 | 5.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Std | 2.45 × 10 | 1.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
30 | Best | 8.20 | 5.53 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Mean | 8.66 | 6.65 × 10 | 0.00 | 2.47 | 0.00 | 0.00 | 0.00 | ||
Std | 5.20 × 10 | 1.20 × 10 | 0.00 | 5.53 | 0.00 | 0.00 | 0.00 | ||
100 | Best | 3.45 × 10 | 3.67 × 10 | 0.00 | 2.27 × 10 | 0.00 | 0.00 | 0.00 | |
Mean | 3.91 × 10 | 5.06 × 10 | 0.00 | 2.96 × 10 | 0.00 | 0.00 | 0.00 | ||
Std | 2.89 × 10 | 9.54 × 10 | 0.00 | 1.02 × 10 | 0.00 | 0.00 | 0.00 | ||
F7 | 10 | Best | 3.73 × 10 | 2.72 × 10 | 4.44 × 10 | 4.00 × 10 | 4.00 × 10 | 4.44 × 10 | 4.44 × 10 |
Mean | 8.26 × 10 | 4.28 × 10 | 3.29 × 10 | 4.71 × 10 | 4.00 × 10 | 4.44 × 10 | 4.44 × 10 | ||
Std | 6.20 × 10 | 1.81 × 10 | 1.59 × 10 | 1.59 × 10 | 0.00 | 0.00 | 0.00 | ||
30 | Best | 2.36 × 10 | 2.23 | 4.44 × 10 | 1.11 × 10 | 4.00 × 10 | 4.44 × 10 | 4.44 × 10 | |
Mean | 4.66 × 10 | 2.47 | 3.29 × 10 | 1.32 × 10 | 4.71 × 10 | 4.44 × 10 | 4.44 × 10 | ||
Std | 2.38 × 10 | 2.99 × 10 | 2.97 × 10 | 1.95 × 10 | 1.59 × 10 | 0.00 | 0.00 | ||
100 | Best | 1.35 × 10 | 4.92 | 4.00 × 10 | 6.44 × 10 | 4.00 × 10 | 4.44 × 10 | 4.44 × 10 | |
Mean | 1.50 × 10 | 5.34 | 4.71 × 10 | 6.94 × 10 | 6.84 × 10 | 4.44 × 10 | 4.44 × 10 | ||
Std | 1.29 | 4.86 × 10 | 1.59 × 10 | 5.39 × 10 | 1.59 × 10 | 0.00 | 0.00 | ||
F8 | 10 | Best | 3.50 × 10 | 5.67 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mean | 6.83 × 10 | 1.65 × 10 | 8.00 × 10 | 2.91 × 10 | 0.00 | 0.00 | 0.00 | ||
Std | 2.08 × 10 | 1.14 × 10 | 9.24 × 10 | 2.55 × 10 | 0.00 | 0.00 | 0.00 | ||
30 | Best | 7.02 × 10 | 2.74 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Mean | 8.74 × 10 | 4.21 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Std | 1.31 × 10 | 2.35 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
100 | Best | 1.76 × 10 | 4.27 × 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Mean | 2.05 × 10 | 4.79 × 10 | 0.00 | 3.62 × 10 | 0.00 | 0.00 | 0.00 | ||
Std | 2.63 × 10 | 3.09 × 10 | 0.00 | 8.09 × 10 | 0.00 | 0.00 | 0.00 |
Function | MIHBA | HBA | NGO | GWO | WOA | PSO | GA |
---|---|---|---|---|---|---|---|
F1 | 0.226 | 0.232 | 0.241 | 0.282 | 0.392 | 0.298 | 0.248 |
F2 | 0.176 | 0.212 | 0.240 | 0.218 | 0.239 | 0.396 | 0.256 |
F3 | 0.525 | 0.558 | 0.678 | 0.589 | 0.445 | 0.631 | 0.465 |
F4 | 0.409 | 0.445 | 0.609 | 0.576 | 0.450 | 0.619 | 0.509 |
F5 | 0.411 | 0.508 | 0.465 | 0.377 | 0.431 | 0.418 | 0.340 |
Type of Power Supply | WT | PV | MT | FC | BT |
---|---|---|---|---|---|
Power Upper Limit/kW | 20 | 40 | 20 | 50 | 20 |
Power Lower Limit/kW | 0 | 0 | 0 | 0 | −20 |
Operating Cost/(¥·kWh) | 0.314 | 0.014 | 0.032 | 0.085 | 0.0016 |
Periods | Purchase Price (¥) | Sale Price (¥) |
---|---|---|
Off-Peak Hours (23:00–7:00) | 0.52 | 0.32 |
Flat Hours (8:00–9:00, 15:00–19:00) | 0.83 | 0.63 |
Peak Hours (10:00–14:00, 20:00–22:00) | 1.13 | 0.88 |
Pollutant Types | Treatment Costs/(¥·kg) | Pollutant Emission Amounts (g·kWh) | ||||
---|---|---|---|---|---|---|
WT | PT | MT | FC | Grid | ||
SO2 | 19.034 | 0 | 0 | 0.041 | 0.004 | 1.841 |
NOX | 65.249 | 0 | 0 | 0.32 | 0.022 | 1.626 |
CO | 11.842 | 0 | 0 | 0.053 | 0 | 0.044 |
Algorithm | Daily Operation Cost of Microgrid (Yuan) | |||
---|---|---|---|---|
Maximum Value | Minimum Value | Average Value | Standard Deviation | |
MIHBA | 1411.138 | 1167.602 | 1298.381 | 51.399 |
HBA | 1730.782 | 1295.395 | 1490.700 | 102.740 |
NGO | 1910.764 | 1401.868 | 1629.087 | 129.897 |
GWO | 1843.409 | 1347.808 | 1620.149 | 123.078 |
WOA | 1858.906 | 1444.331 | 1599.982 | 89.967 |
PSO | 1831.749 | 1355.912 | 1595.317 | 115.612 |
GA | 1864.723 | 1398.646 | 1597.750 | 107.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Dou, Z.; Liu, Y.; Guo, J.; Zhao, J.; Yin, W. Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm. Electronics 2024, 13, 4491. https://doi.org/10.3390/electronics13224491
Wang Z, Dou Z, Liu Y, Guo J, Zhao J, Yin W. Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm. Electronics. 2024; 13(22):4491. https://doi.org/10.3390/electronics13224491
Chicago/Turabian StyleWang, Zheng, Zhenhai Dou, Yuchen Liu, Jiaming Guo, Jingwei Zhao, and Wenliang Yin. 2024. "Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm" Electronics 13, no. 22: 4491. https://doi.org/10.3390/electronics13224491
APA StyleWang, Z., Dou, Z., Liu, Y., Guo, J., Zhao, J., & Yin, W. (2024). Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm. Electronics, 13(22), 4491. https://doi.org/10.3390/electronics13224491