Temperature-Dependent Ferroelectric Behaviors of AlScN-Based Ferroelectric Capacitors with a Thin HfO2 Interlayer for Improved Endurance and Leakage Current
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III–V Semiconductor Based Ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Yazawa, K.; Zakutayev, A.; Brennecka, G.L. A Landau–Devonshire Analysis of Strain Effects on Ferroelectric Al1−xScxN. Appl. Phys. Lett. 2022, 121, 042902. [Google Scholar] [CrossRef]
- Mizutani, R.; Yasuoka, S.; Shiraishi, T.; Shimizu, T.; Uehara, M.; Yamada, H.; Akiyama, M.; Sakata, O.; Funakubo, H. Thickness Scaling of (Al0.8Sc0.2) N Films with Remanent Polarization beyond 100 μC cm−2 around 10 nm in Thickness. Appl. Phys. Express 2021, 14, 105501. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Q.; Tian, B.; Duan, C. New-Generation Ferroelectric AlScN Materials. Nanomicro Lett. 2024, 16, 227. [Google Scholar] [CrossRef]
- Mikolajick, T.; Slesazeck, S.; Mulaosmanovic, H.; Park, M.H.; Fichtner, S.; Lomenzo, P.D.; Hoffmann, M.; Schroeder, U. Next Generation Ferroelectric Materials for Semiconductor Process Integration and Their Applications. J. Appl. Phys. 2021, 129, 100901. [Google Scholar] [CrossRef]
- Wang, P.; Laleyan, D.A.; Pandey, A.; Sun, Y.; Mi, Z. Molecular Beam Epitaxy and Characterization of Wurtzite ScxAl1−xN. Appl. Phys. Lett. 2020, 116, 151903. [Google Scholar] [CrossRef]
- Yuan, C.; Park, M.; Zheng, Y.; Shi, J.; Dargis, R.; Graham, S.; Ansari, A. Phonon Heat Conduction in Al1−xScxN Thin Films. Mater. Today Phys. 2021, 21, 100498. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Yang, W.; Cao, T.; Chen, L.; Li, M.; Liu, F.; Loke, D.K.; Kang, J.; Zhu, Y. Multiscale Modeling of Al0.7Sc0.3 N-Based FeRAM: The Steep Switching, Leakage and Selector-Free Array. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Manz, C.; Leone, S.; Kirste, L.; Ligl, J.; Frei, K.; Fuchs, T.; Prescher, M.; Waltereit, P.; Verheijen, M.A.; Graff, A. Improved AlScN/GaN Heterostructures Grown by Metal-Organic Chemical Vapor Deposition. Semicond Sci. Technol. 2021, 36, 034003. [Google Scholar] [CrossRef]
- Leone, S.; Ligl, J.; Manz, C.; Kirste, L.; Fuchs, T.; Menner, H.; Prescher, M.; Wiegert, J.; Žukauskaitė, A.; Quay, R. Metal-organic Chemical Vapor Deposition of Aluminum Scandium Nitride. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2020, 14, 1900535. [Google Scholar] [CrossRef]
- Ryoo, S.K.; Kim, K.D.; Park, H.W.; Lee, Y.B.; Lee, S.H.; Lee, I.S.; Byun, S.; Shim, D.; Lee, J.H.; Kim, H. Investigation of Optimum Deposition Conditions of Radio Frequency Reactive Magnetron Sputtering of Al0.7Sc0.3N Film with Thickness down to 20 nm. Adv. Electron. Mater. 2022, 8, 2200726. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chung, T.-K.; Chang, E.Y.; Kakushima, K. Room-Temperature Deposition of a Poling-Free Ferroelectric AlScN Film by Reactive Sputtering. Appl. Phys. Lett. 2021, 118, 082902. [Google Scholar] [CrossRef]
- Akiyama, M.; Tabaru, T.; Nishikubo, K.; Teshigahara, A.; Kano, K. Preparation of Scandium Aluminum Nitride Thin Films by Using Scandium Aluminum Alloy Sputtering Target and Design of Experiments. J. Ceram. Soc. Jpn. 2010, 118, 1166–1169. [Google Scholar] [CrossRef]
- Esteves, G.; Berg, M.; Wrasman, K.D.; David Henry, M.; Griffin, B.A.; Douglas, E.A. CMOS Compatible Metal Stacks for Suppression of Secondary Grains in Sc0.125Al0.875N. J. Vac. Sci. Technol. A 2019, 37, 021511. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, J.; Musavigharavi, P.; Zhu, W.; Foucher, A.C.; Trolier-McKinstry, S.E.; Stach, E.A.; Olsson, R.H. Ferroelectric Switching in Sub-20 nm Aluminum Scandium Nitride Thin Films. IEEE Electron Device Lett. 2020, 41, 1774–1777. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Lee, H.K.; Varghese, B.; Ip, R.W.F.; Li, M.; Quek, Z.J.; Hong, Y.; Wang, W.; Song, W. Demonstration of 10 nm Ferroelectric Al0.7Sc0.3N-Based Capacitors for Enabling Selector-Free Memory Array. Materials 2024, 17, 627. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, D.; Kim, K.-H.; Katti, K.; Zheng, J.; Musavigharavi, P.; Miao, J.; Stach, E.A.; Olsson, R.H., III; Jariwala, D. Post-CMOS Compatible Aluminum Scandium Nitride/2D Channel Ferroelectric Field-Effect-Transistor Memory. Nano Lett. 2021, 21, 3753–3761. [Google Scholar] [CrossRef]
- Yang, J.Y.; Oh, S.Y.; Yeom, M.J.; Kim, S.; Lee, G.; Lee, K.; Kim, S.; Yoo, G. Pulsed E-/D-Mode Switchable GaN HEMTs with a Ferroelectric AlScN Gate Dielectric. IEEE Electron Device Lett. 2023, 44, 1260–1263. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Liu, C.; Li, M.; Song, W.; Wang, W.; Loke, D.K.; Zhu, Y. Leakage Mechanism and Cycling Behavior of Ferroelectric Al0.7Sc0.3N. Materials 2024, 17, 397. [Google Scholar] [CrossRef]
- Kataoka, J.; Tsai, S.-L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Kakushima, K. A Possible Origin of the Large Leakage Current in Ferroelectric Al1−xScxN Films. Jpn. J. Appl. Phys. 2021, 60, 030907. [Google Scholar] [CrossRef]
- Tsai, S.-L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chung, T.-K.; Chang, E.Y.; Kakushima, K. Field Cycling Behavior and Breakdown Mechanism of Ferroelectric Al0.78Sc0.22N Films. Jpn. J. Appl. Phys. 2022, 61, SJ1005. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Li, M.; Song, W.; Wang, W.; Chen, Z.; Samanta, S.; Lee, H.K.; Zhu, Y. Bipolar and Unipolar Cycling Behavior in Ferroelectric Scandium-Doped Aluminum Nitride. In Proceedings of the 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Tours, France, 27 June–1 July 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Gaddam, V.; Das, D.; Jeon, S. Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors. IEEE Trans. Electron Devices 2020, 67, 745–750. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, W.; Liu, Y.; Jin, C.; Deng, X.; Zhang, Y.; Liu, F.; Zheng, Y.; Cheng, Y.; Chen, B. HfO2-ZrO2 Superlattice Ferroelectric Capacitor with Improved Endurance Performance and Higher Fatigue Recovery Capability. IEEE Electron Device Lett. 2021, 43, 216–219. [Google Scholar] [CrossRef]
- Shekhawat, A.; Walters, G.; Yang, N.; Guo, J.; Nishida, T.; Moghaddam, S. Data Retention and Low Voltage Operation of Al2O3/Hf0.5Zr0.5O2 Based Ferroelectric Tunnel Junctions. Nanotechnology 2020, 31, 39LT01. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Han, Z.; Zhang, Y.; Musavigharavi, P.; Zheng, J.; Pradhan, D.K.; Stach, E.A.; Olsson III, R.H.; Jariwala, D. Multistate, Ultrathin, Back-End-of-Line-Compatible AlScN Ferroelectric Diodes. ACS Nano 2024, 18, 15925–15934. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Wang, D.; Musavigharavi, P.; Stach, E.A.; Olsson, R.; Jariwala, D. Aluminum Scandium Nitride-Based Metal–Ferroelectric–Metal Diode Memory Devices with High on/off Ratios. Appl. Phys. Lett. 2021, 118, 202901. [Google Scholar] [CrossRef]
- Chen, S.-M.; Nishida, H.; Hoshii, T.; Tsutsui, K.; Wakabayashi, H.; Chang, E.Y.; Kakushima, K. Ferroelectricity Engineered AlScN Thin Films Prepared by Hydrogen Included Reactive Sputtering for Analog Applications. In Proceedings of the 2024 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 23 August 2024; pp. 29–30. [Google Scholar] [CrossRef]
- Oh, S.; Yoon, S.; Lim, Y.; Lee, G.; Yoo, G. Improved Lateral Figure-of-Merit of Heteroepitaxial α-Ga2O3 Power MOSFET Using Ferroelectric AlScN Gate Stack. Appl. Phys. Lett. 2024, 125, 192101. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kim, S.; Lee, G.; Park, J.; Jeon, D.; Kim, S.; Yoo, G. Wide-Range Threshold Voltage Tunable β-Ga2O3 FETs with a Sputtered AlScN Ferroelectric Gate Dielectric. IEEE Electron Device Lett. 2024, 45, 1558–1561. [Google Scholar] [CrossRef]
- Su, J.; Fichtner, S.; Ghori, M.Z.; Wolff, N.; Islam, M.R.; Lotnyk, A.; Kaden, D.; Niekiel, F.; Kienle, L.; Wagner, B. Growth of Highly C-Axis Oriented AlScN Films on Commercial Substrates. Micromachines 2022, 13, 783. [Google Scholar] [CrossRef]
- Pirro, M.; Zhao, X.; Herrera, B.; Simeoni, P.; Rinaldi, M. Effect of Substrate-RF on Sub-200 nm Al0.7Sc0.3N Thin Films. Micromachines 2022, 13, 877. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Krishnamurthy, G.; Petraru, A.; Bohse, S.; Lofink, F.; Chemnitz, S.; Kohlstedt, H.; Kienle, L.; Wagner, B. Identifying and Overcoming the Interface Originating C-Axis Instability in Highly Sc Enhanced AlN for Piezoelectric Micro-Electromechanical Systems. J. Appl. Phys. 2017, 122, 035301. [Google Scholar] [CrossRef]
- Nie, R.; Shao, S.; Luo, Z.; Kang, X.; Wu, T. Characterization of Ferroelectric Al0.7Sc0.3N Thin Film on Pt and Mo Electrodes. Micromachines 2022, 13, 1629. [Google Scholar] [CrossRef]
- Naganuma, H.; Inoue, Y.; Okamura, S. Evaluation of Electrical Properties of Leaky BiFeO3 Films in High Electric Field Region by High-Speed Positive-up–Negative-down Measurement. Appl. Phys. Express 2008, 1, 061601. [Google Scholar] [CrossRef]
- Xi, J.; Zhou, D.; Lv, T.; Tong, Y.; Kou, Q.; Zhao, Y. Realization of Ferroelectricity in Sputtered Al1−xScxN Films with a Wide Range of Sc Content. Mater. Today Commun. 2024, 39, 108966. [Google Scholar] [CrossRef]
- Rassay, S.; Hakim, F.; Li, C.; Forgey, C.; Choudhary, N.; Tabrizian, R. A Segmented-target Sputtering Process for Growth of Sub-50 m Ferroelectric Scandium–Aluminum–Nitride Films with Composition and Stress Tuning. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2021, 15, 2100087. [Google Scholar] [CrossRef]
- Drury, D.; Yazawa, K.; Zakutayev, A.; Hanrahan, B.; Brennecka, G. High-Temperature Ferroelectric Behavior of Al0.7Sc0.3N. Micromachines 2022, 13, 887. [Google Scholar] [CrossRef]
- Gund, V.; Davaji, B.; Lee, H.; Asadi, M.J.; Casamento, J.; Xing, H.G.; Jena, D.; Lal, A. Temperature-Dependent Lowering of Coercive Field in 300 nm Sputtered Ferroelectric Al0.70Sc0.30N. In Proceedings of the 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Sydney, Australia, 16–21 May 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, J.; Tang, Z.; D’Agati, M.; Gharavi, P.S.M.; Liu, X.; Jariwala, D.; Stach, E.A.; Olsson, R.H.; Roebisch, V. Ferroelectric C-Axis Textured Aluminum Scandium Nitride Thin Films of 100 nm Thickness. In Proceedings of the 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 19–23 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Ojha, S.K.; Nazarov, A. Development of Highly Reliable BiFeO3/HfO2/Silicon Gate Stacks for Ferroelectric Non-Volatile Memories in IoT Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 22107–22118. [Google Scholar] [CrossRef]
- Singh, P.; Jha, R.K.; Goswami, M.; Singh, B.R. Integration of Perovskite Pb [Zr0.35Ti0.65] O3/HfO2 Ferroelectric-Dielectric Composite Film on Si Substrate. Microelectron. Int. 2020, 37, 155–162. [Google Scholar] [CrossRef]
Ferroelectric | Structure | 2Pr (μC/cm2) | Ferro/IL | Leakage Current |
---|---|---|---|---|
Thickness (nm) | Density (A/cm2) | |||
Al0.64Sc0.36N [26] | Al-AlScN-HfO2-Ti | n/a | 10/4 | 2.4 × 10 to 8 × 10−8 |
Al0.72Sc0.28N [26] | Al-AlScN-Al2O3-Ti | 50 | 20/4 | 7.9 to 8 × 10−7 |
Al0.7Sc0.3N [37] | AlN-Mo-AlN-AlScN-Pt | 270 | 50/- | n/a |
BiFeO3 [41] | Si-HfO2-BiFeO3-TiN | 8 | 200/10 | 2.34 × 10−9 |
PZT [42] | Si-HfO2-PZT-Al | n/a | 100/5 | 10−5 to 10−7 |
HZO [23] | TiN-HfO2-HZO-TiN | 48 | 10/1 | 9 × 102 to 10−10 |
This work | Ti/Pt-AlScN-Ni | 250 | 65/- | 2 × 10−2 to 10−7 |
This work | Ti/Pt-HfO2-AlScN-Ni | 74 | 65/4 | 3 × 10−4 to 4.4 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, H.J.; Yoon, S.S.; Oh, S.Y.; Lim, Y.; Lee, G.H.; Yoo, G. Temperature-Dependent Ferroelectric Behaviors of AlScN-Based Ferroelectric Capacitors with a Thin HfO2 Interlayer for Improved Endurance and Leakage Current. Electronics 2024, 13, 4515. https://doi.org/10.3390/electronics13224515
Joo HJ, Yoon SS, Oh SY, Lim Y, Lee GH, Yoo G. Temperature-Dependent Ferroelectric Behaviors of AlScN-Based Ferroelectric Capacitors with a Thin HfO2 Interlayer for Improved Endurance and Leakage Current. Electronics. 2024; 13(22):4515. https://doi.org/10.3390/electronics13224515
Chicago/Turabian StyleJoo, Hyeong Jun, Si Sung Yoon, Seung Yoon Oh, Yoojin Lim, Gyu Hyung Lee, and Geonwook Yoo. 2024. "Temperature-Dependent Ferroelectric Behaviors of AlScN-Based Ferroelectric Capacitors with a Thin HfO2 Interlayer for Improved Endurance and Leakage Current" Electronics 13, no. 22: 4515. https://doi.org/10.3390/electronics13224515
APA StyleJoo, H. J., Yoon, S. S., Oh, S. Y., Lim, Y., Lee, G. H., & Yoo, G. (2024). Temperature-Dependent Ferroelectric Behaviors of AlScN-Based Ferroelectric Capacitors with a Thin HfO2 Interlayer for Improved Endurance and Leakage Current. Electronics, 13(22), 4515. https://doi.org/10.3390/electronics13224515