Deep Multi-Similarity Hashing with Spatial-Enhanced Learning for Remote Sensing Image Retrieval
Abstract
:1. Introduction
- By introducing spatial-enhanced learning into each feature group mechanism, the spatial group-enhanced hierarchical network is designed to highlight the spatial distribution of different semantic sub-features, which utilize the similarities between the global and local characteristics in each group to learn the attention mask at each position, generating the noise-robust and discriminative representation.
- By employing pair mining and weighting to calculate self-similarity and relative similarity between pairs, the multi-similarity loss is incorporated into the deep hashing to construct the informative and representative training batches, effectively mitigating the effects of redundant and unbalanced pairs.
- Extensive experiments on three widely used benchmark datasets show that our DMsH-SL framework surpasses other state-of-the-art hashing methods for remote sensing image retrieval applications.
2. Related Work
2.1. Remote Sensing Image Retrieval
2.2. Hash Learning
3. Methodology
3.1. Spatial Group-Enhanced Hierarchical Network
3.2. Multi-Similarity Loss
3.2.1. Pairwise Sampling
3.2.2. Pairwise Weighting
3.3. Out-of-Sample Extension
3.4. Classification Loss
4. Experiments
4.1. Datasets
4.2. Experimental Settings
4.2.1. Baselines
4.2.2. Implementation Details
4.2.3. Evaluation Protocols
4.3. Experimental Results
4.4. Parameter Sensitivity Analysis
4.5. Ablation Study
4.6. Visualization
4.6.1. Grad-Cam Visualization
4.6.2. t-SNE Visualization
4.6.3. Top-10 Retrieval Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Ma, J.; Zhang, Y. Image retrieval from remote sensing big data: A survey. Inf. Fusion 2021, 67, 94–115. [Google Scholar] [CrossRef]
- Ye, Y.; Tang, T.; Zhu, B.; Yang, C.; Li, B.; Hao, S. A multiscale framework with unsupervised learning for remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622215. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hugenholtz, C.H. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sens. Environ. 2021, 264, 112577. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer learning in environmental remote sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
- Wang, S.; Han, W.; Huang, X.; Zhang, X.; Wang, L.; Li, J. Trustworthy remote sensing interpretation: Concepts, technologies, and applications. ISPRS J. Photogramm. Remote Sens. 2024, 209, 150–172. [Google Scholar] [CrossRef]
- Jing, J.; Liu, S.; Wang, G.; Zhang, W.; Sun, C. Recent advances on image edge detection: A comprehensive review. Neurocomputing 2022, 503, 259–271. [Google Scholar] [CrossRef]
- Dubey, S.R. A decade survey of content based image retrieval using deep learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2687–2704. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Zhu, X. Deep Class-guided Hashing for Multi-label Cross-modal Retrieval. arXiv 2024, arXiv:2410.15387. [Google Scholar]
- Meng, L.; Zhang, Q.; Yang, R.; Huang, Y. Unsupervised Deep Hashing with Dynamic Pseudo-Multi-Labels for Image Retrieval. IEEE Signal Process. Lett. 2024, 31, 909–913. [Google Scholar] [CrossRef]
- Zhu, L.; Zheng, C.; Guan, W.; Li, J.; Yang, Y.; Shen, H.T. Multi-modal Hashing for Efficient Multimedia Retrieval: A Survey. IEEE Trans. Knowl. Data Eng. 2023, 36, 239–260. [Google Scholar] [CrossRef]
- Hu, H.; Xie, L.; Hong, R.; Tian, Q. Creating something from nothing: Unsupervised knowledge distillation for cross-modal hashing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3123–3132. [Google Scholar]
- Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Huang, W.; Dong, D.; Scott, M.R. Multi-similarity loss with general pair weighting for deep metric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5022–5030. [Google Scholar]
- Zhan, J.; Liu, S.; Mo, Z.; Zhu, Y. Multi-similarity semantic correctional hashing for cross modal retrieval. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Li, X.; Hu, X.; Yang, J. Spatial group-wise enhance: Improving semantic feature learning in convolutional networks. arXiv 2019, arXiv:1905.09646. [Google Scholar]
- Song, W.; Li, S.; Benediktsson, J.A. Deep hashing learning for visual and semantic retrieval of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9661–9672. [Google Scholar] [CrossRef]
- Li, P.; Han, L.; Tao, X.; Zhang, X.; Grecos, C.; Plaza, A.; Ren, P. Hashing nets for hashing: A quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7331–7345. [Google Scholar] [CrossRef]
- Liu, C.; Ma, J.; Tang, X.; Liu, F.; Zhang, X.; Jiao, L. Deep hash learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3420–3443. [Google Scholar] [CrossRef]
- Song, W.; Gao, Z.; Dian, R.; Ghamisi, P.; Zhang, Y.; Benediktsson, J.A. Asymmetric hash code learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5617514. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Lu, L.; Xiong, S. Unsupervised Transformer Balanced Hashing for Multispectral Remote Sensing Image Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7089–7099. [Google Scholar] [CrossRef]
- Fernandez-Beltran, R.; Demir, B.; Pla, F.; Plaza, A. Unsupervised remote sensing image retrieval using probabilistic latent semantic hashing. IEEE Geosci. Remote Sens. Lett. 2020, 18, 256–260. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, X.; Cheng, Z.; Li, J.; Zhang, H. Deep collaborative multi-view hashing for large-scale image search. IEEE Trans. Image Process. 2020, 29, 4643–4655. [Google Scholar] [CrossRef]
- Song, G.; Huang, K.; Su, H.; Song, F.; Yang, M. Deep Ranking Distribution Preserving Hashing for Robust Multi-Label Cross-modal Retrieval. IEEE Trans. Multimed. 2024, 26, 7027–7042. [Google Scholar] [CrossRef]
- Weiss, Y.; Torralba, A.; Fergus, R. Spectral hashing. Adv. Neural Inf. Process. Syst. 2008, 21. [Google Scholar]
- Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2916–2929. [Google Scholar] [CrossRef] [PubMed]
- Kulis, B.; Darrell, T. Learning to hash with binary reconstructive embeddings. Adv. Neural Inf. Process. Syst. 2009, 22. [Google Scholar]
- Liu, W.; Wang, J.; Ji, R.; Jiang, Y.G.; Chang, S.F. Supervised hashing with kernels. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2074–2081. [Google Scholar]
- Zhu, X.; Zhang, L.; Huang, Z. A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 2014, 23, 3737–3750. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, Y.; Xiong, S. Multi-scale context deep hashing for remote sensing image retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7163–7172. [Google Scholar] [CrossRef]
- Ye, F.; Wu, K.; Zhang, R.; Wang, M.; Meng, X.; Li, D. Multi-Scale Feature Fusion Based on PVTv2 for Deep Hash Remote Sensing Image Retrieval. Remote Sens. 2023, 15, 4729. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, Y.; Li, X.; Feng, S.; Zhang, B.; Kang, J.; Dai, K. Unsupervised deep hashing through learning soft pseudo label for remote sensing image retrieval. Knowl. Based Syst. 2022, 239, 107807. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Z.; Zong, H.; Miao, L. Wide-context attention network for remote sensing image retrieval. IEEE Geosci. Remote Sens. Lett. 2020, 18, 2082–2086. [Google Scholar] [CrossRef]
- Yang, H.F.; Lin, K.; Chen, C.S. Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 437–451. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Qi, X.; Zhu, P.; Wang, Y.; Zhang, L.; Peng, J.; Wu, M.; Chen, J.; Zhao, X.; Zang, N.; Mathiopoulos, P.T. MLRSNet: A multi-label high spatial resolution remote sensing dataset for semantic scene understanding. ISPRS J. Photogramm. Remote Sens. 2020, 169, 337–350. [Google Scholar] [CrossRef]
- Hua, Y.; Mou, L.; Zhu, X.X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. ISPRS J. Photogramm. Remote Sens. 2019, 149, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Wang, S.; Kang, W.C. Feature learning based deep supervised hashing with pairwise labels. arXiv 2015, arXiv:1511.03855. [Google Scholar]
- Jiang, Q.Y.; Li, W.J. Asymmetric deep supervised hashing. In Proceedings of the PAAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Hoe, J.T.; Ng, K.W.; Zhang, T.; Chan, C.S.; Song, Y.Z.; Xiang, T. One loss for all: Deep hashing with a single cosine similarity based learning objective. Adv. Neural Inf. Process. Syst. 2021, 34, 24286–24298. [Google Scholar]
- Xu, C.; Chai, Z.; Xu, Z.; Yuan, C.; Fan, Y.; Wang, J. Hyp2 loss: Beyond hypersphere metric space for multi-label image retrieval. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 3173–3184. [Google Scholar]
- Doan, K.D.; Yang, P.; Li, P. One loss for quantization: Deep hashing with discrete wasserstein distributional matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9447–9457. [Google Scholar]
- Xu, C.; Chai, Z.; Xu, Z.; Li, H.; Zuo, Q.; Yang, L.; Yuan, C. HHF: Hashing-guided hinge function for deep hashing retrieval. IEEE Trans. Multimed. 2022, 25, 7428–7440. [Google Scholar] [CrossRef]
- Peng, L.; Qian, J.; Wang, C.; Liu, B.; Dong, Y. Swin transformer-based supervised hashing. Appl. Intell. 2023, 53, 17548–17560. [Google Scholar] [CrossRef]
- Liu, H.; Wang, R.; Shan, S.; Chen, X. Deep supervised hashing for fast image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2064–2072. [Google Scholar]
- Movshovitz-Attias, Y.; Toshev, A.; Leung, T.K.; Ioffe, S.; Singh, S. No fuss distance metric learning using proxies. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 360–368. [Google Scholar]
Method | UCMerced Dataset | ||||
---|---|---|---|---|---|
16 bits | 32 bits | 48 bits | 64 bits | 128 bits | |
DPSH | 0.9142 | 0.9209 | 0.9065 | 0.9092 | 0.9124 |
ADSH | 0.8799 | 0.8874 | 0.8786 | 0.8790 | 0.8849 |
DHCNN | 0.8946 | 0.9088 | 0.9123 | 0.9339 | 0.9385 |
OrthoHash | 0.8070 | 0.8390 | 0.8490 | 0.8415 | 0.8445 |
HyLoss | 0.9264 | 0.9395 | 0.9590 | 0.9612 | 0.9736 |
RelaHash | 0.8261 | 0.8204 | 0.8291 | 0.8431 | 0.8374 |
HHF | 0.8814 | 0.9071 | 0.9044 | 0.9048 | 0.8962 |
SWTH | 0.9223 | 0.9460 | 0.9531 | 0.9612 | 0.9592 |
DMsH-SL | 0.9571 | 0.9622 | 0.9697 | 0.9724 | 0.9826 |
Method | MLRSNet Dataset | ||||
---|---|---|---|---|---|
16 bits | 32 bits | 48 bits | 64 bits | 128 bits | |
DPSH | 0.9232 | 0.9491 | 0.9463 | 0.9360 | 0.9436 |
ADSH | 0.9430 | 0.9074 | 0.8787 | 0.9083 | 0.9070 |
DHCNN | 0.9473 | 0.9491 | 0.9063 | 0.9172 | 0.9169 |
OrthoHash | 0.9234 | 0.9278 | 0.9370 | 0.9405 | 0.9462 |
RelaHash | 0.9335 | 0.9421 | 0.9484 | 0.9467 | 0.9524 |
HHF | 0.9350 | 0.9639 | 0.9723 | 0.9667 | 0.9526 |
SWTH | 0.8503 | 0.8554 | 0.8653 | 0.8662 | 0.8599 |
DMsH-SL | 0.9487 | 0.9642 | 0.9681 | 0.9711 | 0.9762 |
Method | DFC15 Dataset | ||||
---|---|---|---|---|---|
16 bits | 32 bits | 48 bits | 64 bits | 128 bits | |
DPSH | 0.9447 | 0.9363 | 0.9197 | 0.9190 | 0.9536 |
ADSH | 0.9584 | 0.9584 | 0.9686 | 0.9586 | 0.9586 |
DHCNN | 0.9239 | 0.9521 | 0.9455 | 0.9527 | 0.9585 |
OrthoHash | 0.9647 | 0.9557 | 0.9548 | 0.9589 | 0.9625 |
HyLoss | 0.9622 | 0.9677 | 0.9673 | 0.9635 | 0.9670 |
RelaHash | 0.9563 | 0.9606 | 0.9617 | 0.9610 | 0.9609 |
HHF | 0.9573 | 0.9603 | 0.9707 | 0.9697 | 0.9760 |
SWTH | 0.9301 | 0.9475 | 0.9553 | 0.9564 | 0.9626 |
DMsH-SL | 0.9908 | 0.9892 | 0.9937 | 0.9941 | 0.9966 |
Method | 16 bits | 48 bits | 64 bits |
---|---|---|---|
DMsH-SL-C | 0.7666 | 0.7861 | 0.7812 |
DMsH-SL-D | 0.8429 | 0.8495 | 0.8798 |
DMsH-SL-N | 0.8771 | 0.9322 | 0.9356 |
DMsH-SL | 0.9571 | 0.9697 | 0.9724 |
Method | 16 bits | 48 bits | 64 bits |
---|---|---|---|
DMsH-SL-C | 0.7946 | 0.8818 | 0.9060 |
DMsH-SL-D | 0.8401 | 0.8707 | 0.8642 |
DMsH-SL-N | 0.9360 | 0.9567 | 0.9629 |
DMsH-SL | 0.9387 | 0.9681 | 0.9711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qin, Q.; Ge, M.; Huang, J. Deep Multi-Similarity Hashing with Spatial-Enhanced Learning for Remote Sensing Image Retrieval. Electronics 2024, 13, 4520. https://doi.org/10.3390/electronics13224520
Zhang H, Qin Q, Ge M, Huang J. Deep Multi-Similarity Hashing with Spatial-Enhanced Learning for Remote Sensing Image Retrieval. Electronics. 2024; 13(22):4520. https://doi.org/10.3390/electronics13224520
Chicago/Turabian StyleZhang, Huihui, Qibing Qin, Meiling Ge, and Jianyong Huang. 2024. "Deep Multi-Similarity Hashing with Spatial-Enhanced Learning for Remote Sensing Image Retrieval" Electronics 13, no. 22: 4520. https://doi.org/10.3390/electronics13224520
APA StyleZhang, H., Qin, Q., Ge, M., & Huang, J. (2024). Deep Multi-Similarity Hashing with Spatial-Enhanced Learning for Remote Sensing Image Retrieval. Electronics, 13(22), 4520. https://doi.org/10.3390/electronics13224520