Assessment of Tree Species Classification by Decision Tree Algorithm Using Multiwavelength Airborne Polarimetric LiDAR Data
Abstract
:1. Introduction
2. MAPL System
3. Data Collection and Processing
3.1. Data Collection
3.2. Processing of LiDAR Waveform Data
4. Decision-Tree-Based ML Classification
4.1. Decision Tree Classification
- if x1 < 99.14 then node 2 elseif x1 ≥ 99.14 then node 3
- if x3 < 45.17 then node 4 elseif x3 ≥ 45.17 then node 5
- class = Maple
- if x2 < 96.13 then node 6 elseif x2 ≥ 96.13 then node 7
- if x4 < 24.86 then node 8 elseif x4 ≥ 24.86 then node 9
- if x4 < 27.46 then node 10 elseif x4 ≥ 27.46 then node 11
- if x4 < 26.16 then node 12 elseif x4 ≥ 26.16 then node 13
- if x3 < 45.75 then node 14 elseif x3 ≥ 45.75 then node 15
- if x4 < 27.46 then node 16 elseif x4 ≥ 27.46 then node 17
- if x4 < 25.18 then node 18 elseif x4 ≥ 25.18 then node 19
- if x2 < 83.74 then node 20 elseif x2 ≥ 83.74 then node 21
- class = Blue Spruce
- class = Ash
- if x2 < 94.42 then node 22 elseif x2 ≥ 94.42 then node 23
- if x1 < 93.03 then node 24 elseif x1 ≥ 93.03 then node 25
- if x4 < 25.83 then node 26 elseif x4 ≥ 25.83 then node 27
- if x2 < 81.60 then node 28 elseif x2 ≥ 81.60 then node 29
- class = Austrian Pine
- class = Ash
- class = Ash
- class = Ponderosa Pine
- class = Austrian Pine
- if x1 < 92.15 then node 30 elseif x1 ≥ 92.15 then node 31
- if x2 < 93.56 then node 32 elseif x2 ≥ 93.56 then node 33
- if x2 < 92.71 then node 34 elseif x2 ≥ 92.71 then node 35
- if x1 < 92.15 then node 36 elseif x1 ≥ 92.15 then node 37
- if x4 < 27.13 then node 38 elseif x4 ≥ 27.13 then node 39
- class = Ash
- class = Ponderosa Pine
- class = Austrian Pine
- if x2 < 96.98 then node 40 elseif x2 ≥ 96.98 then node 41
- if x1 < 91.28 then node 42 elseif x1 ≥ 91.28 then node 43
- class = Ponderosa Pine
- if x2 < 90.15 then node 44 elseif x2 ≥ 90.15 then node 45
- class = Ponderosa Pine
- class = Austrian Pine
- if x3 < 45.75 then node 46 elseif x3 ≥ 45.75 then node 47
- class = Ash
- if x2 < 81.18 then node 48 elseif x2 ≥ 81.18 then node 49
- if x1 < 94.77 then node 50 elseif x1 ≥ 94.77 then node 51
- class = Ponderosa Pine
- class = Austrian Pine
- if x2 < 89.29 then node 52 elseif x2 ≥ 89.29 then node 53
- class = Austrian Pine
- class = Ponderosa Pine
- if x1 < 93.90 then node 54 elseif x1 ≥ 93.90 then node 55
- class = Ponderosa Pine
- class = Ash
- class = Ponderosa Pine
- if x1 < 93.90 then node 56 elseif x1 ≥ 93.90 then node 57
- class = Ponderosa Pine
- class = Austrian Pine
- if x2 < 91.86 then node 58 elseif x2 ≥ 91.86 then node 59
- if x2 < 93.56 then node 60 elseif x2 ≥ 93.56 then node 61
- class = Ponderosa Pine
- if x1 < 93.03 then node 62 elseif x1 ≥ 93.03 then node 63
- class = Ponderosa Pine
- if x2 < 91.00 then node 64 elseif x2 ≥ 91.00 then node 65
- class = Austrian Pine
- class = Austrian Pine
- class = Ponderosa Pine
- if x4 < 24.53 then node 66 elseif x4 ≥ 24.53 then node 67
- class = Austrian Pine
- if x4 < 24.53 then node 68 elseif x4 ≥ 24.53 then node 69
- class = Austrian Pine
- class = Ponderosa Pine
- if x2 < 95.27 then node 70 elseif x2 ≥ 95.27 then node 71
- class = Ponderosa Pine
- class = Austrian Pine
- class = Austrian Pine
- class = Ponderosa Pine
4.2. Model Performance Evaluation and Validation
- i.
- Fit the Decision Tree Model: Train the decision tree model using the training samples (in this case, a total of 2106 × 4 = 8424 waveforms), which include features and corresponding labels.
- ii.
- Make Predictions: Use the trained decision tree model to make predictions on the training datasets. Each dataset in the training dataset will be classified into a specific class by the decision tree model.
- iii.
- Compare Predictions with Actual Labels: The misclassification rate is the rate of incorrectly classified instances in the training dataset.
- iv.
- Calculate the Re-substitution Error Rate [34]:
5. Discussions
6. Conclusions
- Polarimetric measurement has been proven to be an effective method for target detection. Polarimetric diversity enhances measurement and provides more information on target characterization.
- The MAPL peak reflectance intensity data, at dual wavelength and dual polarization, is an effective and simple feature for classification purposes.
- The decision tree algorithm proves to be effective in this case as suggested by the re-substitution error and the k-fold cross-validation loss error.
- The method developed in this study can be extended to new data and other vegetation classification applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.M.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Huang, M.T.; Yelekçi, O.; Yu, R.; Zhou, B.Q. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; Volume 2. [Google Scholar]
- Ma, Z.Y.; Ren, J.X.; Chen, H.T.; Jiang, H.; Gao, Q.X.; Liu, S.L.; Yan, W.; Li, Z.M. Analysis and Recommendations of the IPCC Working Group I Assessment Report. Resour. Environ. Sci. 2022, 35, 2550–2558. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. Envision2030: 17 Goals to Transform the World for Persons With Disabilities [Internet]; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2024. Available online: https://social.desa.un.org/issues/disability/envision-2030/17goals-pwds (accessed on 28 October 2024).
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of vegetation response to climate change: A review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Canto-Sansores, W.G.; López-Martínez, J.O.; González, E.J.; Meave, J.A.; Hernández-Stefanoni, J.L.; Macario-Mendoza, P.A. The importance of spatial scale and vegetation complexity in woody species diversity and its relationship with remotely sensed variables. ISPRS J. Photogramm. Remote Sens. 2024, 216, 142–253. [Google Scholar] [CrossRef]
- Rapinel, S.; Hubert-Moy, L. One-class classification of natural vegetation using remote sensing: A review. Remote Sens. 2021, 13, 1892. [Google Scholar] [CrossRef]
- Tan, S. Development of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing. Ph.D. Dissertation, University of Nebraska-Lincoln, Lincoln, NE, USA, 2003. [Google Scholar]
- Kalshoven, J.E.; Tierney, M.R.; Daughtry, C.S.T.; McMurtrey, J.E. Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser. Appl. Opt. 1995, 34, 2745–2749. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.; Cohen, W.B.; Parker, G.; Shugart, H.H. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens. Environ. 1999, 67, 83–98. [Google Scholar] [CrossRef]
- Kogut, T.; Bakuła, K. Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighborhood Points. Remote Sens. 2019, 11, 1255. [Google Scholar] [CrossRef]
- Haider, A.; Tan, S. Improvement of lidar data classification algorithm using machine learning technique. In Proceedings of the SPIE Polarization Science and Remote Sensing IX, San Diego, CA, USA, 14–15 August 2019; Volume 11132. [Google Scholar]
- Tan, S.; Khan, A. Water stress detection of lilac leaves using a polarized laser. In Proceedings of the SPIE, Remote Sensing and Modeling of Ecosystems for Sustainability XII, San Diego, CA, USA, 1–12 August 2015; Volume 9610. [Google Scholar]
- Tan, S.; Stoker, J.; Greenlee, S. Detection of foliage-obscured vehicle using a multiwavelength polarimetric lidar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; Volume 4423, pp. 2503–2506. [Google Scholar]
- Saarela, S.; Holm, S.; Healey, S.P.; Andersen, H.-E.; Petersson, H.; Prentius, W.; Patterson, P.L.; Næsset, E.; Gregoire, T.G.; Ståhl, G. Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data. Remote Sens. 2018, 10, 1832. [Google Scholar] [CrossRef]
- Wołk, K.; Tatara, M.S. A Review of Semantic Segmentation and Instance Segmentation Techniques in Forestry Using LiDAR and Imagery Data. Electronics 2024, 13, 4139. [Google Scholar] [CrossRef]
- Tan, S.; Haider, A. A comparative study of polarimetric and non-polarimetric lidar in deciduous—Coniferous tree classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1178–1181. [Google Scholar]
- Tan, S.; Narayanan, R.; Helder, D. Polarimetric reflectance and depolarization ratio from several tree species using a multiwavelength polarimetric lidar. In Proceedings of the SPIE, Polarization Science and Remote Sensing II, San Diego, CA, USA, 2–4 August 2005; Volume 5888. [Google Scholar]
- Hu, Z.; Zhou, R. Review on some important research progresses in biodegradable plastics/polymers. Recent Prog. Mater. 2024, 6, 015. [Google Scholar] [CrossRef]
- Samuel, A. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Wang, T. Improved random forest classification model combined with C5.0 algorithm for vegetation feature analysis in non-agricultural environments. Sci. Rep. 2024, 14, 10367. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Wang, L. Change in fractional vegetation cover and its prediction during the growing season based on machine learning in Southwest China. Remote Sens. 2024, 16, 3623. [Google Scholar] [CrossRef]
- Piaser, E.; Villa, P. evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate wetlands using multi-temporal Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103202. [Google Scholar] [CrossRef]
- Drobnjak, S.; Stojanović, M.; Djordjević, D.; Bakrač, S.; Jovanović, J.; Djordjević, A. Testing a new ensemble vegetation classification method based on deep learning and machine learning methods using aerial photogrammetric images. Front. Environ. Sci. 2022, 10, 896158. [Google Scholar] [CrossRef]
- Campos-Tabener, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar]
- Tan, S.; Narayanan, R. Design and performance of a multiwavelength airborne polarimetric lidar (MAPL) for vegetation remote sensing. Appl. Opt. 2004, 43, 2360–2368. [Google Scholar] [CrossRef]
- Tan, S.; Narayanan, R. A multiwavelength airborne polarimetric lidar for vegetation remote sensing: Instrumentation and preliminary test results. IEEE Geosci. Remote Sens. Symp. 2002, 5, 2675–2677. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall: Boca Raton, FL, USA, 1984. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA, 1993. [Google Scholar]
- Crasto, N.; Hopkinson, C.; Forbes, D.L.; Lesack, L.; Marsh, P.; Spooner, I.; van der Sanden, J.J. A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta. Remote Sens. Environ. 2015, 164, 90–102. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, S.; Wang, X.; Xia, X.; Xiao, Y.; Li, T. A Decision Tree Based Road Recognition Approach Using Roadside Fixed 3D LiDAR Sensors. IEEE Access 2019, 7, 53878–53890. [Google Scholar] [CrossRef]
- Zou, X.; Cheng, M.; Wang, C.; Xia, Y.; Li, J. Tree Classification in Complex Forest Point Clouds Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2360–2364. [Google Scholar] [CrossRef]
- Gharineiat, Z.; Tarsha Kurdi, F.; Campbell, G. 2022. Review of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques. Remote Sens. 2022, 14, 4685. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J. A Review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Ciaburro, G. MATLAB for Machine Learning—Unlock the Power of Deep Leaning for Swift and Enhanced Results, 2nd ed.; Packt Publishing: Birmingham, UK, 2024. [Google Scholar]
- Tan, S.; Johnson, S.; Gu, Z. Laser depolarization ratio measurement of corn leaves from the biochar and non-biochar applied plots. Opt. Express 2018, 26, 14295–14306. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. Remote Sens. 2022, 14, 2835. [Google Scholar] [CrossRef]
Tree Species | Dataset |
---|---|
Blue Spruce | 244 |
Ash | 277 |
Ponderosa Pine | 795 |
Austrian Pine | 318 |
Maple | 472 |
Ch1 | Ch2 | Ch3 | Ch4 | |
---|---|---|---|---|
Ch1 | 1.0000 | 0.9227 | 0.3258 | −0.4050 |
Ch2 | 0.9227 | 1.0000 | 0.3537 | −0.4343 |
Ch3 | 0.3258 | 0.3537 | 1.0000 | −0.3435 |
Ch4 | −0.4050 | −0.4343 | −0.3435 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Tan, S. Assessment of Tree Species Classification by Decision Tree Algorithm Using Multiwavelength Airborne Polarimetric LiDAR Data. Electronics 2024, 13, 4534. https://doi.org/10.3390/electronics13224534
Hu Z, Tan S. Assessment of Tree Species Classification by Decision Tree Algorithm Using Multiwavelength Airborne Polarimetric LiDAR Data. Electronics. 2024; 13(22):4534. https://doi.org/10.3390/electronics13224534
Chicago/Turabian StyleHu, Zhong, and Songxin Tan. 2024. "Assessment of Tree Species Classification by Decision Tree Algorithm Using Multiwavelength Airborne Polarimetric LiDAR Data" Electronics 13, no. 22: 4534. https://doi.org/10.3390/electronics13224534
APA StyleHu, Z., & Tan, S. (2024). Assessment of Tree Species Classification by Decision Tree Algorithm Using Multiwavelength Airborne Polarimetric LiDAR Data. Electronics, 13(22), 4534. https://doi.org/10.3390/electronics13224534