Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. Contribution and Outline
2. The Topology and Multilevel Hybrid Modulation of the Proposed Novel BIDC Converter
2.1. Structure Description of Topology
2.2. Operation Principles for Multilevel Hybrid Modulation
3. The Vector Characteristics Analysis of LCL-T Resonant Tank
4. The Design of ZVS to Active Bridge Switches Located on Both Sides of GIM
4.1. The Relationship Between Turn-Off Current and ZVS
4.2. The Achievement of ZVS for Lagging Switches of MBA, ABA by Designing PSM Angles α, β
4.3. The Design of ZVS for the Right Side Active Bridge Switches
5. The Simulation Design of Prototype
5.1. Simulation Parameters Design
5.2. The Checking Calculation of Parameters
5.3. The Key Waveforms of Simulation Study
5.4. The Performance Evaluation of the Proposed Converter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.M.S.; Nadeem, F.; Aftab, M.A.; Ali, I.; Ustun, T.S. The Emerging Energy Internet: Architecture, Benefits, Challenges, and Future Prospects. Electronics 2019, 8, 1037. [Google Scholar] [CrossRef]
- Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments. Electronics 2019, 8, 972. [Google Scholar] [CrossRef]
- Wang, K.; Yu, J.; Yu, Y.; Qian, Y.; Zeng, D.; Guo, S.; Xiang, Y.; Wu, J. A Survey on Energy Internet: Architecture, Approach, and Emerging Technologies. IEEE Syst. J. 2018, 12, 2403–2416. [Google Scholar] [CrossRef]
- Huang, A.Q.; Crow, M.L.; Heydt, G.T.; Zheng, J.P.; Dale, S.J. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet. Proc. IEEE 2011, 99, 133–148. [Google Scholar] [CrossRef]
- She, X.; Lukic, S.; Huang, A.Q.; Bhattacharya, S.; Baran, M. Performance Evaluation of Solid State Transformer Based Microgrid in FREEDM Systems. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Li, H.; Corzine, K.; Guo, T. Study on the Start-Up Schemes for the Three-Stage Solid State Transformer Applications. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012. [Google Scholar] [CrossRef]
- Yao, T.; Leonard, I.; Ayyanar, R.; Steurer, M. Single-Phase Three-Stage SST Modeling Using RTDS for Controller Hardware-in-the-Loop Application. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J. Research Review on Multi-Port Energy Routers Adapted to Renewable Energy Access. Electronics 2024, 13, 1493. [Google Scholar] [CrossRef]
- Pellitteri, F.; Miceli, R.; Schettino, G.; Viola, F.; Schirone, L. Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies. Electronics 2020, 9, 724. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Burgos, R. Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
- De Doncker, R.; Divan, D.; Kheraluwala, M. A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [Google Scholar] [CrossRef]
- Kheraluwala, M.; Gascoigne, R.; Divan, D.; Baumann, E. Performance Characterization of a High-Power Dual Active Bridge DC-to-DC Converter. IEEE Trans. Ind. Appl. 1992, 28, 1294–1301. [Google Scholar] [CrossRef]
- Bai, H.; Mi, C. Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC–DC Converters Using Novel Dual-Phase-Shift Control. IEEE Trans. Power Electron. 2008, 23, 2905–2914. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, Q.; Sun, W. Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid. IEEE Trans. Power Electron. 2012, 27, 4667–4680. [Google Scholar] [CrossRef]
- Wu, K.; de Silva, C.W.; Dunford, W.G. Stability Analysis of Isolated Bidirectional Dual Active Full-Bridge DC–DC Converter with Triple Phase-Shift Control. IEEE Trans. Power Electron. 2012, 27, 2007–2017. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, X.; Li, W.; Wu, X.; Wang, B. A Modified Dual Active Bridge Converter with Hybrid Phase-Shift Control for Wide Input Voltage Range. IEEE Trans. Power Electron. 2016, 31, 6884–6900. [Google Scholar] [CrossRef]
- Ma, Z.; Niu, H.; Zhang, X.; Wu, X.; Cai, X. Virtual Space Vector Overmodulation Strategy for NPC Three-Level Inverters with Common-Mode Voltage Suppression. IEEE Trans. Power Electron. 2024, 39, 6877–6888. [Google Scholar] [CrossRef]
- Song, C.; Sangwongwanich, A.; Yang, Y.; Pan, Y.; Blaabjerg, F. Analysis and Optimal Modulation for 2/3-Level DAB Converters to Minimize Current Stress with Five-Level Control. IEEE Trans. Power Electron. 2023, 38, 4596–4612. [Google Scholar] [CrossRef]
- Liu, P.; Chen, C.; Duan, S. An Optimized Modulation Strategy for the Three-Level DAB Converter with Five Control Degrees of Freedom. IEEE Trans. Ind. Electron. 2020, 67, 254–264. [Google Scholar] [CrossRef]
- Twiname, R.P.; Thrimawithana, D.J.; Madawala, U.K.; Baguley, C.A. A New Resonant Bidirectional DC–DC Converter Topology. IEEE Trans. Power Electron. 2014, 29, 4733–4740. [Google Scholar] [CrossRef]
- Saha, T.; Bagchi, A.C.; Wang, H.; Zane, R.A. Bidirectional LCL-T Resonant DC–DC Converter for Priority Loads in Undersea Distribution Networks. IEEE Trans. Power Electron. 2022, 37, 14874–14887. [Google Scholar] [CrossRef]
- Guo, Z.; Li, M. An Optimized DPS Control Strategy for LCL Resonant Dual Active Bridge Converter for Wide Voltage Conversion Ratio. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 501–512. [Google Scholar] [CrossRef]
- Liu, B.; Davari, P.; Blaabjerg, F. Nonlinear Coss-VDS Profile Based ZVS Range Calculation for Dual Active Bridge Converters. IEEE Trans. Power Electron. 2021, 36, 45–50. [Google Scholar] [CrossRef]
Components | Values |
Uinp/Uins | 200 V |
ωs | 2π × 50 × 103 rad/s |
C1p~C2s | 940 μF |
Cr | 50 nF |
Lr/Lk | 200 μH |
TXp/TXs | 1:1 |
TX | 1:1 |
Q1~Q8, T1~T8 | IRF460 MOSFETs |
D11~D42 | Power diode |
Cf1~Cf4 | 1 μF |
Control Variables | Values |
φ | π/1.8 (5.5 μs) |
α | 2π/25 (0.8 μs) |
β | π/5 (2 μs) |
tDT | 0.5 μs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Zhang, Z.; Xu, Y.; Zou, D.; Cao, H. Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter. Electronics 2024, 13, 4557. https://doi.org/10.3390/electronics13224557
Shi J, Zhang Z, Xu Y, Zou D, Cao H. Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter. Electronics. 2024; 13(22):4557. https://doi.org/10.3390/electronics13224557
Chicago/Turabian StyleShi, Jie, Zhongyi Zhang, Yi Xu, Dandan Zou, and Hui Cao. 2024. "Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter" Electronics 13, no. 22: 4557. https://doi.org/10.3390/electronics13224557
APA StyleShi, J., Zhang, Z., Xu, Y., Zou, D., & Cao, H. (2024). Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter. Electronics, 13(22), 4557. https://doi.org/10.3390/electronics13224557