Control Strategy for Disc Coreless Permanent Magnet Synchronous Motor with LC Filter
Abstract
:1. Introduction
- (1)
- For resonant harmonics, in order to only measure the inverter side currents, a sliding mode observer is introduced to estimate the capacitance current. The observer is designed with double sliding mode surfaces, which reduces the order of the system.
- (2)
- For fifth and seventh harmonics, in order to free them from complicated coordinate systems, the PIR+CCFAD controller is designed. The transfer function of the PIR controller in the motor drive system with an LC filter is derived, and the optimal design of the control parameters is completed by the bode diagram.
2. Mathematical Model of the Permanent Magnet Synchronous Motor with an LC Filter
3. Capacitor Current Feedback Active Damping (CCFAD) Resonant Suppression
3.1. Resonance Analysis
3.2. Active Damping
3.3. State Observer Active Damping
4. Harmonic Suppression with the PIR Controller
5. Experimental Verification
5.1. Feasibility Experiment
5.2. Performances Verified Under Different Filter Parameters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neethu, S.; Nikam, S.P.; Singh, S. High-Speed Coreless Axial-Flux Permanent-Magnet Motor with Printed Circuit Board Winding. IEEE Trans. Ind. Appl. 2019, 55, 1954–1962. [Google Scholar]
- Zhang, Z.; Wang, C.; Geng, W. Design and Optimization of Halbach-Array PM Rotor for High-Speed Axial-Flux Permanent. Magnet Machine with Ironless Stator. IEEE Trans. Ind. Electron. 2020, 67, 7269–7279. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Pei, L.; Cao, J.; Liu, J. Analysis and Design of a Novel Dual-Trap LCL Inverter Output Filter for HS-PMSM Drives. IEEE Access 2024, 12, 109793–109805. [Google Scholar] [CrossRef]
- Singh, S.K.; Pilli, N.K.; Guedon, F.; McMahon, R. PMSM drive using Silicon carbide Inverter: Development and Testing at Elevated temperature. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015. [Google Scholar]
- Wang, K.; Zheng, Z.; Wei, D.; Fan, B. Topology and Capacitor Voltage Balancing Control of a Symmetrical Hybrid Nine-Level Inverter for High-Speed Motor Drives. IEEE Trans. Ind. Appl. 2017, 53, 5563–5572. [Google Scholar] [CrossRef]
- Geng, W.; Zhang, Z.; Li, Q. Analysis and Experimental Verification of a Conventional Inverter with Output LC Filter to Drive Ironless Stator Axial-Flux PM Motor. IEEE Trans. Tra. Electron. 2021, 7, 2600–2610. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, L.; Wang, K.; Lv, X.; Wei, H. A Novel Repeat PI Decoupling Control Strategy with Linear Active Disturbance Rejection for a Three-Level Neutral-Point-Clamped Active Power Filter with an LCL Filter. Electronics 2024, 13, 2973. [Google Scholar] [CrossRef]
- Jayalath, S.; Hanif, M. An LCL-Filter Design with Optimum Total Inductance and Capacitance. IEEE Trans. Power. Electron. 2018, 33, 6687–6698. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, Y.; Peng, F.; Dong, J.; Zhu, Z. Discrete-Time Dynamic-Decoupled Current Control for LCL-Equipped High-Speed Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2022, 69, 12414–12425. [Google Scholar] [CrossRef]
- Upadhyay, N.; Padhy, N.P.; Agarwal, P. Grid-Current Control with Inverter-Current Feedback Active Damping for LCL Grid-Connected Inverter. IEEE Trans. Ind. Appl. 2024, 60, 1738–1749. [Google Scholar] [CrossRef]
- Yao, W.; Yang, Y.; Zhang, B. Design and Analysis of Robust Active Damping for LCL Filters Using Digital Notch Filters. IEEE Trans. Power. Electron. 2017, 32, 2360–2375. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Y.; Guo, H. Analysis and design of passively damped LCL filters for three-phase converters. Trans. China Electrotech. Soc. 2017, 32, 195–205. [Google Scholar]
- Pena-Alzola, R.; Liserre, M.; Blaabjerg, F.; Sebastian, R.; Dannehl, J.; Fuchs, F.W. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters. IEEE Trans. Power. Electron. 2013, 28, 2642–2646. [Google Scholar] [CrossRef]
- Hatua, K.; Jain, A.K.; Banerjee, D.; Ranganathan, V. Active Damping of Output LC Filter Resonance for Vector-Controlled VSI-Fed AC Motor Drives. IEEE Trans. Ind. Electron. 2012, 59, 334–342. [Google Scholar] [CrossRef]
- Mishra, P.; Maheshwari, R.; Patil, D. Stabilization of Rotor Flux-Oriented Control of Induction Motor with Filter by Active Damping. IEEE Trans. Ind. Electron. 2019, 66, 9173–9183. [Google Scholar] [CrossRef]
- Mishra, P.; Maheshwari, R. A Simple Feedforward Approach to Stabilize VSI-Fed Induction Motor with Filter in RFOC. IEEE Trans. Ind. Electron. 2020, 67, 10191–10201. [Google Scholar] [CrossRef]
- Yang, M.; Lyu, Z.; Xu, D.; Long, J.; Shang, S.; Wang, P.; Xu, D. Resonance Suppression and EMI Reduction of GaN-Based Motor Drive with Sine Wave Filter. IEEE Trans. Ind. Appl. 2020, 56, 2741–2751. [Google Scholar] [CrossRef]
- Walz, S.; Liserre, M. Hysteresis model predictive current control for PMSM with LC filter considering different error shapes. IEEE Open J. Power Electron. 2020, 1, 190–197. [Google Scholar] [CrossRef]
- Xue, C.; Zhou, D.; Li, Y. Finite-Control-Set Model Predictive Control for Three-Level NPC Inverter-Fed PMSM Drives with LC Filter. IEEE Trans. Ind. Electron. 2021, 68, 11980–11991. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Deng, H. Torque Ripple Minimization of PMSM Based on Robust ILC Via Adaptive Sliding Mode Control. IEEE Trans. Power. Electron. 2018, 33, 3655–3671. [Google Scholar] [CrossRef]
- Yu, J.; LI, L.; Du, P.; Zhang, J. Harmonic analysis of pivot current of high-speed permanent magnet synchronous motor. Electr. Mach. Control 2016, 20, 28–36. [Google Scholar]
- Li, Z.; Wu, H.; Chen, Z.; Shi, Y.; Qiu, L.; FANG, Y. Single- and Two-Phase Open-Circuit Fault Tolerant Control for Dual Three-Phase PM Motor Without Phase Shifting. IEEE Access 2020, 8, 171945–171955. [Google Scholar] [CrossRef]
- Yan, Y.; Lei, J.; Liu, B.; Xiang, X.; Li, C.; Li, W. Proportional Resonant Control with Phase Correction for Stability and Dynamics Enhancement Under Low Carrier Ratio Conditions. IEEE Trans. Power. Electron. 2023, 38, 8597–8611. [Google Scholar] [CrossRef]
- Cai, D.; Liu, H.; Hu, S.; Sun, G.; Wang, E. A Proportional-Integral-Resonant Current Control Strategy for a Wind-Driven Brushless Doubly Fed Generator during Network Unbalance. Electronics 2024, 13, 1616. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Y.; Zou, J. Sliding mode control with open-switch fault diagnosis and sensorless estimation based on PI observer for PMSM drive connected with an LC filter. IET Power Electron. 2020, 13, 2334–2341. [Google Scholar] [CrossRef]
- Wu, X.; Li, C.; Zhang, Y.; Chen, S.; Ma, Z.; Han, Y. Sensorless Control of IPMSM Equipped with LC Sinusoidal Filter Based on Full-Order Sliding Mode Observer and Feedforward QPLL. IEEE Trans. Power. Electron. 2024, 39, 8072–8085. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Rated speed | 3000 rpm |
Rated torque | 24 Nm |
Stator inductance | 0.1 mH |
Stator resistance | 0.3 Ω |
Pole pairs | 12 |
Rotor flux linkage | 0.07873 Wb |
Rated voltage | 350 V |
Rated current | 13.5 A |
0.4 mH | |
10 μF |
Speed (rpm) | Torque (Nm) | THD (%) | |
---|---|---|---|
PI | 800 | 12 | 18.68 |
PI+CCFAD | 800 | 12 | 14.68 |
PIR+CCFAD | 800 | 12 | 10.96 |
PI | 1600 | 12 | 27.13 |
PI+CCFAD | 1600 | 12 | 17.37 |
PIR+CCFAD | 1600 | 12 | 14.82 |
Speed (rpm) | Torque (Nm) | THD (%) | ||
---|---|---|---|---|
0.4 mH | 4.7 μF | 800 | 12 | 11.27 |
0.4 mH | 10 μF | 800 | 12 | 10.96 |
0.8 mH | 4.7 μF | 800 | 12 | 10.46 |
0.8 mH | 10 μF | 800 | 12 | 9.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Kang, M. Control Strategy for Disc Coreless Permanent Magnet Synchronous Motor with LC Filter. Electronics 2024, 13, 4572. https://doi.org/10.3390/electronics13224572
Tian H, Kang M. Control Strategy for Disc Coreless Permanent Magnet Synchronous Motor with LC Filter. Electronics. 2024; 13(22):4572. https://doi.org/10.3390/electronics13224572
Chicago/Turabian StyleTian, Hong, and Min Kang. 2024. "Control Strategy for Disc Coreless Permanent Magnet Synchronous Motor with LC Filter" Electronics 13, no. 22: 4572. https://doi.org/10.3390/electronics13224572
APA StyleTian, H., & Kang, M. (2024). Control Strategy for Disc Coreless Permanent Magnet Synchronous Motor with LC Filter. Electronics, 13(22), 4572. https://doi.org/10.3390/electronics13224572